Skip to content

56. Smart Trade Anomaly Detection System

Overview

The Smart Trade Anomaly Detection System provides comprehensive real-time monitoring of all trades and orders, automatically detecting various anomalous trading patterns including large trades, price jumps, high-frequency cancellations, suspicious counterparty behavior, and system anomalies. The system implements intelligent risk response mechanisms, automated alerts, and sophisticated pattern recognition to ensure trading integrity and prevent market manipulation.

Core Capabilities

  • Real-Time Trade Monitoring: Continuous monitoring of all trades and order events
  • Multi-Pattern Anomaly Detection: Detection of large trades, price jumps, high-frequency activities
  • Intelligent Risk Response: Automated alerts, strategy suspension, and account freezing
  • Machine Learning Integration: Advanced ML models for pattern recognition and anomaly detection
  • Cross-Market Surveillance: Multi-account and multi-market correlation analysis
  • Comprehensive Logging: Complete audit trail of all detected anomalies
  • Real-Time Alerting: Immediate notification of suspicious activities

System Architecture

Microservice: trade-anomaly-center

services/trade-anomaly-center/
├── src/
│   ├── main.py
│   ├── listener/
│   │   ├── trade_stream_listener.py
│   │   ├── order_event_listener.py
│   │   └── market_data_listener.py
│   ├── detector/
│   │   ├── anomaly_detector.py
│   │   ├── pattern_analyzer.py
│   │   ├── ml_anomaly_detector.py
│   │   └── correlation_detector.py
│   ├── responder/
│   │   ├── risk_responder.py
│   │   ├── alert_manager.py
│   │   ├── strategy_controller.py
│   │   └── account_freezer.py
│   ├── logger/
│   │   ├── anomaly_logger.py
│   │   ├── audit_trail.py
│   │   └── performance_metrics.py
│   ├── api/
│   │   ├── anomaly_api.py
│   ├── config.py
│   └── requirements.txt
├── Dockerfile
└── tests/

Core Components

1. Trade Stream Listener

Real-time monitoring of trading activities:

class TradeStreamListener:
    def __init__(self, order_event_listener, market_data_listener):
        self.order_event_listener = order_event_listener
        self.market_data_listener = market_data_listener
        self.trade_history = []
        self.order_history = []
        self.active_monitors = {}

    async def start_monitoring(self):
        """Start monitoring all trading activities"""

        # Monitor trade executions
        await self.monitor_trade_executions()

        # Monitor order events
        await self.monitor_order_events()

        # Monitor market data
        await self.monitor_market_data()

        # Monitor system events
        await self.monitor_system_events()

    async def monitor_trade_executions(self):
        """Monitor trade execution events"""

        trade_monitor = TradeExecutionMonitor()
        await trade_monitor.start_monitoring()

        async for trade in trade_monitor.get_trades():
            await self.process_trade_event(trade)

    async def monitor_order_events(self):
        """Monitor order lifecycle events"""

        order_monitor = OrderEventMonitor()
        await order_monitor.start_monitoring()

        async for order_event in order_monitor.get_order_events():
            await self.process_order_event(order_event)

    async def monitor_market_data(self):
        """Monitor market data for price anomalies"""

        market_monitor = MarketDataMonitor()
        await market_monitor.start_monitoring()

        async for market_update in market_monitor.get_market_updates():
            await self.process_market_update(market_update)

    async def monitor_system_events(self):
        """Monitor system-level events"""

        system_monitor = SystemEventMonitor()
        await system_monitor.start_monitoring()

        async for system_event in system_monitor.get_system_events():
            await self.process_system_event(system_event)

    async def process_trade_event(self, trade_event):
        """Process a trade execution event"""

        trade_record = {
            "timestamp": datetime.now().isoformat(),
            "trade_id": trade_event.get("trade_id"),
            "symbol": trade_event.get("symbol"),
            "side": trade_event.get("side"),
            "quantity": trade_event.get("quantity"),
            "price": trade_event.get("price"),
            "amount": trade_event.get("amount"),
            "account_id": trade_event.get("account_id"),
            "strategy_id": trade_event.get("strategy_id"),
            "counterparty": trade_event.get("counterparty"),
            "venue": trade_event.get("venue"),
            "order_id": trade_event.get("order_id")
        }

        # Store trade record
        await self.store_trade_record(trade_record)

        # Trigger anomaly detection
        await self.trigger_trade_anomaly_detection(trade_record)

    async def process_order_event(self, order_event):
        """Process an order lifecycle event"""

        order_record = {
            "timestamp": datetime.now().isoformat(),
            "order_id": order_event.get("order_id"),
            "symbol": order_event.get("symbol"),
            "side": order_event.get("side"),
            "order_type": order_event.get("order_type"),
            "quantity": order_event.get("quantity"),
            "price": order_event.get("price"),
            "status": order_event.get("status"),
            "account_id": order_event.get("account_id"),
            "strategy_id": order_event.get("strategy_id"),
            "action": order_event.get("action"),  # new, modify, cancel, fill
            "venue": order_event.get("venue")
        }

        # Store order record
        await self.store_order_record(order_record)

        # Trigger order anomaly detection
        await self.trigger_order_anomaly_detection(order_record)

    async def process_market_update(self, market_update):
        """Process market data update"""

        market_record = {
            "timestamp": datetime.now().isoformat(),
            "symbol": market_update.get("symbol"),
            "bid": market_update.get("bid"),
            "ask": market_update.get("ask"),
            "bid_size": market_update.get("bid_size"),
            "ask_size": market_update.get("ask_size"),
            "last_price": market_update.get("last_price"),
            "volume": market_update.get("volume"),
            "venue": market_update.get("venue")
        }

        # Store market record
        await self.store_market_record(market_record)

        # Trigger market anomaly detection
        await self.trigger_market_anomaly_detection(market_record)

    async def store_trade_record(self, trade_record):
        """Store trade record"""

        # Store in database
        await self.save_trade_to_database(trade_record)

        # Add to history
        self.trade_history.append(trade_record)

        # Keep history manageable
        if len(self.trade_history) > 10000:
            self.trade_history = self.trade_history[-10000:]

    async def store_order_record(self, order_record):
        """Store order record"""

        # Store in database
        await self.save_order_to_database(order_record)

        # Add to history
        self.order_history.append(order_record)

        # Keep history manageable
        if len(self.order_history) > 10000:
            self.order_history = self.order_history[-10000:]

    async def get_recent_trades(self, minutes: int = 60) -> List[Dict]:
        """Get recent trades"""

        cutoff_time = datetime.now() - timedelta(minutes=minutes)

        recent_trades = [
            trade for trade in self.trade_history
            if datetime.fromisoformat(trade["timestamp"]) > cutoff_time
        ]

        return recent_trades

    async def get_recent_orders(self, minutes: int = 60) -> List[Dict]:
        """Get recent orders"""

        cutoff_time = datetime.now() - timedelta(minutes=minutes)

        recent_orders = [
            order for order in self.order_history
            if datetime.fromisoformat(order["timestamp"]) > cutoff_time
        ]

        return recent_orders

2. Anomaly Detector

Comprehensive anomaly detection for trading activities:

class AnomalyDetector:
    def __init__(self, pattern_analyzer, ml_anomaly_detector):
        self.pattern_analyzer = pattern_analyzer
        self.ml_anomaly_detector = ml_anomaly_detector
        self.detection_rules = self.load_detection_rules()
        self.anomaly_history = []

    async def detect_trade_anomalies(self, trade_record: Dict) -> List[Dict]:
        """Detect anomalies in trade execution"""

        anomalies = []

        # Large trade detection
        large_trade_anomaly = await self.detect_large_trade(trade_record)
        if large_trade_anomaly:
            anomalies.append(large_trade_anomaly)

        # Price jump detection
        price_jump_anomaly = await self.detect_price_jump(trade_record)
        if price_jump_anomaly:
            anomalies.append(price_jump_anomaly)

        # Unusual timing detection
        timing_anomaly = await self.detect_unusual_timing(trade_record)
        if timing_anomaly:
            anomalies.append(timing_anomaly)

        # Counterparty behavior detection
        counterparty_anomaly = await self.detect_counterparty_anomaly(trade_record)
        if counterparty_anomaly:
            anomalies.append(counterparty_anomaly)

        # ML-based anomaly detection
        ml_anomaly = await self.ml_anomaly_detector.detect_anomaly(trade_record)
        if ml_anomaly:
            anomalies.append(ml_anomaly)

        return anomalies

    async def detect_order_anomalies(self, order_record: Dict) -> List[Dict]:
        """Detect anomalies in order behavior"""

        anomalies = []

        # High-frequency cancellation detection
        hf_cancel_anomaly = await self.detect_high_frequency_cancellation(order_record)
        if hf_cancel_anomaly:
            anomalies.append(hf_cancel_anomaly)

        # Order size anomaly detection
        size_anomaly = await self.detect_order_size_anomaly(order_record)
        if size_anomaly:
            anomalies.append(size_anomaly)

        # Order pattern anomaly detection
        pattern_anomaly = await self.detect_order_pattern_anomaly(order_record)
        if pattern_anomaly:
            anomalies.append(pattern_anomaly)

        # Market manipulation detection
        manipulation_anomaly = await self.detect_market_manipulation(order_record)
        if manipulation_anomaly:
            anomalies.append(manipulation_anomaly)

        return anomalies

    async def detect_large_trade(self, trade_record: Dict) -> Optional[Dict]:
        """Detect unusually large trades"""

        symbol = trade_record["symbol"]
        amount = trade_record["amount"]

        # Get average trade amount for symbol
        avg_amount = await self.get_average_trade_amount(symbol)

        # Check if trade is significantly larger than average
        if avg_amount > 0 and amount > avg_amount * self.detection_rules["large_trade_threshold"]:
            return {
                "type": "large_trade_anomaly",
                "severity": "medium",
                "description": f"Trade amount {amount} exceeds {self.detection_rules['large_trade_threshold']}x average ({avg_amount})",
                "trade_record": trade_record,
                "threshold": avg_amount * self.detection_rules["large_trade_threshold"],
                "average_amount": avg_amount
            }

        return None

    async def detect_price_jump(self, trade_record: Dict) -> Optional[Dict]:
        """Detect unusual price movements"""

        symbol = trade_record["symbol"]
        trade_price = trade_record["price"]

        # Get current market prices
        market_data = await self.get_current_market_data(symbol)

        if market_data:
            best_bid = market_data.get("bid", 0)
            best_ask = market_data.get("ask", 0)

            # Check if trade price is outside normal range
            if best_bid > 0 and best_ask > 0:
                spread = best_ask - best_bid
                mid_price = (best_bid + best_ask) / 2

                # Check if price is outside normal range
                if trade_price > best_ask * (1 + self.detection_rules["price_jump_threshold"]) or \
                   trade_price < best_bid * (1 - self.detection_rules["price_jump_threshold"]):

                    return {
                        "type": "price_jump_anomaly",
                        "severity": "high",
                        "description": f"Trade price {trade_price} outside normal range [{best_bid}, {best_ask}]",
                        "trade_record": trade_record,
                        "market_data": market_data,
                        "price_deviation": abs(trade_price - mid_price) / mid_price
                    }

        return None

    async def detect_high_frequency_cancellation(self, order_record: Dict) -> Optional[Dict]:
        """Detect high-frequency order cancellations"""

        account_id = order_record["account_id"]
        action = order_record["action"]

        if action == "cancel":
            # Get recent cancellations for this account
            recent_cancellations = await self.get_recent_cancellations(account_id, minutes=1)

            if len(recent_cancellations) > self.detection_rules["max_cancellations_per_minute"]:
                return {
                    "type": "high_frequency_cancellation_anomaly",
                    "severity": "high",
                    "description": f"High-frequency cancellations detected: {len(recent_cancellations)} in 1 minute",
                    "order_record": order_record,
                    "cancellation_count": len(recent_cancellations),
                    "threshold": self.detection_rules["max_cancellations_per_minute"]
                }

        return None

    async def detect_order_size_anomaly(self, order_record: Dict) -> Optional[Dict]:
        """Detect unusual order sizes"""

        symbol = order_record["symbol"]
        quantity = order_record["quantity"]

        # Get average order size for symbol
        avg_size = await self.get_average_order_size(symbol)

        # Check if order size is unusual
        if avg_size > 0 and quantity > avg_size * self.detection_rules["large_order_threshold"]:
            return {
                "type": "large_order_anomaly",
                "severity": "medium",
                "description": f"Order size {quantity} exceeds {self.detection_rules['large_order_threshold']}x average ({avg_size})",
                "order_record": order_record,
                "threshold": avg_size * self.detection_rules["large_order_threshold"],
                "average_size": avg_size
            }

        return None

    async def detect_market_manipulation(self, order_record: Dict) -> Optional[Dict]:
        """Detect potential market manipulation"""

        symbol = order_record["symbol"]
        account_id = order_record["account_id"]

        # Check for layering (placing orders on both sides)
        layering_detected = await self.detect_layering(account_id, symbol)
        if layering_detected:
            return {
                "type": "market_manipulation_anomaly",
                "severity": "high",
                "description": "Potential layering detected",
                "order_record": order_record,
                "manipulation_type": "layering"
            }

        # Check for spoofing (placing large orders to move price)
        spoofing_detected = await self.detect_spoofing(account_id, symbol)
        if spoofing_detected:
            return {
                "type": "market_manipulation_anomaly",
                "severity": "high",
                "description": "Potential spoofing detected",
                "order_record": order_record,
                "manipulation_type": "spoofing"
            }

        return None

    async def detect_layering(self, account_id: str, symbol: str) -> bool:
        """Detect layering behavior"""

        # Get recent orders for this account and symbol
        recent_orders = await self.get_recent_orders_by_account_symbol(account_id, symbol, minutes=5)

        # Check if orders are placed on both sides
        buy_orders = [order for order in recent_orders if order["side"] == "buy"]
        sell_orders = [order for order in recent_orders if order["side"] == "sell"]

        return len(buy_orders) > 0 and len(sell_orders) > 0

    async def detect_spoofing(self, account_id: str, symbol: str) -> bool:
        """Detect spoofing behavior"""

        # Get recent large orders that were cancelled
        recent_large_cancelled = await self.get_recent_large_cancelled_orders(account_id, symbol, minutes=10)

        # Check if large orders were placed and quickly cancelled
        return len(recent_large_cancelled) > self.detection_rules["spoofing_threshold"]

    def load_detection_rules(self) -> Dict:
        """Load detection rules"""

        return {
            "large_trade_threshold": 5.0,  # 5x average trade size
            "large_order_threshold": 10.0,  # 10x average order size
            "price_jump_threshold": 0.01,   # 1% outside bid/ask
            "max_cancellations_per_minute": 10,
            "spoofing_threshold": 3,  # 3 large cancelled orders
            "unusual_timing_threshold": 300  # 5 minutes outside normal hours
        }

3. Risk Responder

Automated response to detected anomalies:

class RiskResponder:
    def __init__(self, alert_manager, strategy_controller, account_freezer):
        self.alert_manager = alert_manager
        self.strategy_controller = strategy_controller
        self.account_freezer = account_freezer
        self.response_rules = self.load_response_rules()

    async def respond_to_anomalies(self, anomalies: List[Dict]):
        """Respond to detected anomalies"""

        for anomaly in anomalies:
            await self.respond_to_anomaly(anomaly)

    async def respond_to_anomaly(self, anomaly: Dict):
        """Respond to a single anomaly"""

        anomaly_type = anomaly["type"]
        severity = anomaly["severity"]

        # Get response actions based on type and severity
        response_actions = self.get_response_actions(anomaly_type, severity)

        # Execute response actions
        for action in response_actions:
            await self.execute_response_action(action, anomaly)

    def get_response_actions(self, anomaly_type: str, severity: str) -> List[str]:
        """Get response actions for anomaly type and severity"""

        if severity == "high":
            if anomaly_type in ["price_jump_anomaly", "market_manipulation_anomaly"]:
                return ["alert_team", "freeze_account", "stop_strategy"]
            elif anomaly_type == "high_frequency_cancellation_anomaly":
                return ["alert_team", "freeze_account"]
            else:
                return ["alert_team", "stop_strategy"]

        elif severity == "medium":
            if anomaly_type in ["large_trade_anomaly", "large_order_anomaly"]:
                return ["alert_team", "monitor_account"]
            else:
                return ["alert_team"]

        else:  # low severity
            return ["log_anomaly"]

    async def execute_response_action(self, action: str, anomaly: Dict):
        """Execute a specific response action"""

        if action == "alert_team":
            await self.alert_team(anomaly)

        elif action == "freeze_account":
            await self.freeze_account(anomaly)

        elif action == "stop_strategy":
            await self.stop_strategy(anomaly)

        elif action == "monitor_account":
            await self.monitor_account(anomaly)

        elif action == "log_anomaly":
            await self.log_anomaly(anomaly)

    async def alert_team(self, anomaly: Dict):
        """Send alert to risk management team"""

        alert_message = {
            "timestamp": datetime.now().isoformat(),
            "anomaly_type": anomaly["type"],
            "severity": anomaly["severity"],
            "description": anomaly["description"],
            "entity_id": self.get_entity_id(anomaly),
            "action_required": True
        }

        await self.alert_manager.send_alert(alert_message)

    async def freeze_account(self, anomaly: Dict):
        """Freeze trading account"""

        account_id = self.get_account_id(anomaly)
        if account_id:
            await self.account_freezer.freeze_account(account_id, anomaly)

    async def stop_strategy(self, anomaly: Dict):
        """Stop trading strategy"""

        strategy_id = self.get_strategy_id(anomaly)
        if strategy_id:
            await self.strategy_controller.stop_strategy(strategy_id, anomaly)

    async def monitor_account(self, anomaly: Dict):
        """Increase monitoring for account"""

        account_id = self.get_account_id(anomaly)
        if account_id:
            await self.account_freezer.increase_monitoring(account_id)

    async def log_anomaly(self, anomaly: Dict):
        """Log anomaly for record keeping"""

        await self.anomaly_logger.log_anomaly(anomaly)

    def get_entity_id(self, anomaly: Dict) -> str:
        """Get entity ID from anomaly"""

        if "trade_record" in anomaly:
            return anomaly["trade_record"].get("account_id", "")
        elif "order_record" in anomaly:
            return anomaly["order_record"].get("account_id", "")
        else:
            return ""

    def get_account_id(self, anomaly: Dict) -> Optional[str]:
        """Get account ID from anomaly"""

        return self.get_entity_id(anomaly)

    def get_strategy_id(self, anomaly: Dict) -> Optional[str]:
        """Get strategy ID from anomaly"""

        if "trade_record" in anomaly:
            return anomaly["trade_record"].get("strategy_id")
        elif "order_record" in anomaly:
            return anomaly["order_record"].get("strategy_id")
        else:
            return None

    def load_response_rules(self) -> Dict:
        """Load response rules"""

        return {
            "high_severity_actions": ["alert_team", "freeze_account", "stop_strategy"],
            "medium_severity_actions": ["alert_team", "monitor_account"],
            "low_severity_actions": ["log_anomaly"],
            "auto_freeze_threshold": 3,  # 3 high-severity anomalies
            "auto_stop_threshold": 5     # 5 medium-severity anomalies
        }

API Design

Anomaly Detection API

@router.get("/anomalies/recent")
async def get_recent_anomalies(minutes: int = 60):
    """Get recent anomalies"""

    cutoff_time = datetime.now() - timedelta(minutes=minutes)

    anomalies = await anomaly_detector.get_recent_anomalies(cutoff_time)

    return {
        "anomalies": anomalies,
        "total_count": len(anomalies),
        "high_severity": len([a for a in anomalies if a["severity"] == "high"]),
        "medium_severity": len([a for a in anomalies if a["severity"] == "medium"]),
        "low_severity": len([a for a in anomalies if a["severity"] == "low"])
    }

@router.get("/anomalies/account/{account_id}")
async def get_account_anomalies(account_id: str, hours: int = 24):
    """Get anomalies for specific account"""

    anomalies = await anomaly_detector.get_anomalies_by_account(account_id, hours)

    return {
        "account_id": account_id,
        "anomalies": anomalies,
        "total_count": len(anomalies),
        "anomaly_types": list(set(a["type"] for a in anomalies))
    }

@router.get("/anomalies/strategy/{strategy_id}")
async def get_strategy_anomalies(strategy_id: str, hours: int = 24):
    """Get anomalies for specific strategy"""

    anomalies = await anomaly_detector.get_anomalies_by_strategy(strategy_id, hours)

    return {
        "strategy_id": strategy_id,
        "anomalies": anomalies,
        "total_count": len(anomalies),
        "anomaly_types": list(set(a["type"] for a in anomalies))
    }

@router.post("/anomalies/acknowledge/{anomaly_id}")
async def acknowledge_anomaly(anomaly_id: str, user_id: str):
    """Acknowledge an anomaly"""

    await anomaly_detector.acknowledge_anomaly(anomaly_id, user_id)

    return {"status": "acknowledged", "anomaly_id": anomaly_id}

@router.get("/anomalies/statistics")
async def get_anomaly_statistics(days: int = 7):
    """Get anomaly statistics"""

    statistics = await anomaly_detector.get_anomaly_statistics(days)

    return {
        "period_days": days,
        "statistics": statistics,
        "trends": await anomaly_detector.get_anomaly_trends(days)
    }

@router.get("/trades/suspicious")
async def get_suspicious_trades(hours: int = 24):
    """Get suspicious trades"""

    suspicious_trades = await trade_stream_listener.get_suspicious_trades(hours)

    return {
        "suspicious_trades": suspicious_trades,
        "total_count": len(suspicious_trades),
        "time_period_hours": hours
    }

Frontend Integration

Anomaly Detection Dashboard

const AnomalyDetectionView: React.FC = () => {
  const [recentAnomalies, setRecentAnomalies] = useState<Anomaly[]>([]);
  const [anomalyStatistics, setAnomalyStatistics] = useState<AnomalyStatistics | null>(null);
  const [suspiciousTrades, setSuspiciousTrades] = useState<Trade[]>([]);
  const [selectedAccount, setSelectedAccount] = useState<string>("");

  return (
    <div className="anomaly-detection-dashboard">
      {/* Real-time Anomaly Alerts */}
      <AnomalyAlertsPanel 
        anomalies={recentAnomalies}
        onAnomalySelect={handleAnomalySelect}
      />

      {/* Anomaly Statistics */}
      <AnomalyStatisticsPanel 
        statistics={anomalyStatistics}
      />

      {/* Anomaly Timeline */}
      <AnomalyTimelinePanel 
        anomalies={recentAnomalies}
      />

      {/* Suspicious Trades */}
      <SuspiciousTradesPanel 
        trades={suspiciousTrades}
        onTradeSelect={handleTradeSelect}
      />

      {/* Account Anomaly Analysis */}
      <AccountAnomalyPanel 
        selectedAccount={selectedAccount}
        anomalies={recentAnomalies}
      />

      {/* Anomaly Type Breakdown */}
      <AnomalyTypeBreakdownPanel 
        anomalies={recentAnomalies}
      />

      {/* Risk Response Actions */}
      <RiskResponsePanel 
        anomalies={recentAnomalies}
        onActionExecute={handleActionExecute}
      />

      {/* Anomaly Trends */}
      <AnomalyTrendsPanel 
        statistics={anomalyStatistics}
      />
    </div>
  );
};

Implementation Roadmap

Phase 1: Core Detection (Weeks 1-2)

  • Implement trade stream listener
  • Develop basic anomaly detection rules
  • Create risk response framework

Phase 2: Advanced Detection (Weeks 3-4)

  • Implement ML-based anomaly detection
  • Develop pattern recognition algorithms
  • Build correlation analysis

Phase 3: Response & Monitoring (Weeks 5-6)

  • Create automated response mechanisms
  • Build comprehensive logging system
  • Develop real-time alerting

Phase 4: Integration & Optimization (Weeks 7-8)

  • Integrate with existing trading systems
  • Performance optimization
  • Security hardening and testing

Business Value

Strategic Benefits

  1. Trading Integrity: Ensures fair and transparent trading practices
  2. Risk Mitigation: Early detection and prevention of market manipulation
  3. Regulatory Compliance: Automated surveillance for regulatory requirements
  4. Market Protection: Prevents abuse and maintains market stability

Operational Benefits

  1. Automated Monitoring: 24/7 automated surveillance of all trading activities
  2. Instant Response: Immediate action on detected anomalies
  3. Comprehensive Coverage: Multi-pattern detection across all trading activities
  4. Audit Trail: Complete record of all detected anomalies and responses

Technical Specifications

Performance Requirements

  • Real-time Detection: < 50ms for anomaly detection
  • Event Processing: < 100ms for trade/order event processing
  • Response Time: < 200ms for automated responses
  • Alert Delivery: < 30s for critical alert delivery

Detection Capabilities

  • Large Trade Detection: 5x average trade size threshold
  • Price Jump Detection: 1% outside bid/ask spread
  • High-Frequency Detection: >10 cancellations per minute
  • Market Manipulation: Layering and spoofing detection
  • ML Integration: Advanced pattern recognition

Security Requirements

  • Data Encryption: All trading data encrypted at rest and in transit
  • Access Control: Role-based access to anomaly detection system
  • Audit Logging: Complete audit trail for all detections and responses
  • Compliance: Support for regulatory reporting requirements

This Smart Trade Anomaly Detection System provides institutional-grade trading surveillance, ensuring trading integrity and preventing market manipulation, similar to the systems used by major exchanges like Binance, Coinbase Pro, and NYSE Arca.