54. Global Strategy Performance Ranking System¶
Overview¶
The Global Strategy Performance Ranking System provides comprehensive strategy evaluation and dynamic capital allocation through real-time collection of key performance metrics, intelligent scoring algorithms, and automated ranking mechanisms. The system continuously monitors strategy performance, generates dynamic rankings, and automatically adjusts capital allocation to optimize portfolio returns while implementing strategy lifecycle management and performance-based filtering.
Core Capabilities¶
- Real-Time Performance Monitoring: Continuous collection of key performance indicators across all strategies
- Intelligent Scoring System: Multi-factor weighted scoring with customizable metrics and weights
- Dynamic Ranking Engine: Real-time strategy ranking with historical trend analysis
- Automated Capital Allocation: Dynamic capital reallocation based on performance rankings
- Strategy Lifecycle Management: Automatic identification and management of underperforming strategies
- Performance Analytics: Comprehensive performance analysis and trend identification
- Risk-Adjusted Evaluation: Sophisticated risk-adjusted performance metrics
System Architecture¶
Microservice: strategy-ranking-center¶
services/strategy-ranking-center/
├── src/
│ ├── main.py
│ ├── collector/
│ │ ├── performance_collector.py
│ │ ├── metrics_calculator.py
│ │ └── data_aggregator.py
│ ├── scorer/
│ │ ├── strategy_scorer.py
│ │ ├── scoring_engine.py
│ │ ├── weight_optimizer.py
│ │ └── benchmark_comparator.py
│ ├── ranker/
│ │ ├── strategy_ranker.py
│ │ ├── ranking_engine.py
│ │ ├── trend_analyzer.py
│ │ └── volatility_adjuster.py
│ ├── allocator/
│ │ ├── capital_allocator.py
│ │ ├── allocation_optimizer.py
│ │ ├── rebalancing_engine.py
│ │ └── risk_parity_calculator.py
│ ├── controller/
│ │ ├── strategy_freezer.py
│ │ ├── lifecycle_manager.py
│ │ ├── performance_filter.py
│ │ └── alert_manager.py
│ ├── analytics/
│ │ ├── performance_analyzer.py
│ │ ├── correlation_analyzer.py
│ │ ├── attribution_analyzer.py
│ │ └── backtest_validator.py
│ ├── api/
│ │ ├── ranking_api.py
│ ├── config.py
│ └── requirements.txt
├── Dockerfile
└── tests/
Core Components¶
1. Performance Collector¶
Real-time collection of strategy performance metrics:
class PerformanceCollector:
def __init__(self, metrics_calculator, data_aggregator):
self.metrics_calculator = metrics_calculator
self.data_aggregator = data_aggregator
self.performance_cache = {}
self.collection_history = {}
async def collect_all_strategies_performance(self) -> Dict:
"""Collect performance data for all strategies"""
# Get all active strategies
active_strategies = await self.get_active_strategies()
performance_data = {}
for strategy_id in active_strategies:
try:
# Collect performance metrics
strategy_performance = await self.collect_strategy_performance(strategy_id)
performance_data[strategy_id] = strategy_performance
# Cache performance data
self.performance_cache[strategy_id] = strategy_performance
except Exception as e:
print(f"Error collecting performance for {strategy_id}: {e}")
continue
# Record collection timestamp
collection_time = datetime.now().isoformat()
self.collection_history[collection_time] = {
"strategies_count": len(performance_data),
"collection_status": "completed"
}
return performance_data
async def collect_strategy_performance(self, strategy_id: str) -> Dict:
"""Collect comprehensive performance metrics for a strategy"""
# Get basic performance metrics
basic_metrics = await self.get_basic_metrics(strategy_id)
# Calculate advanced metrics
advanced_metrics = await self.calculate_advanced_metrics(strategy_id)
# Get risk metrics
risk_metrics = await self.calculate_risk_metrics(strategy_id)
# Get attribution metrics
attribution_metrics = await self.calculate_attribution_metrics(strategy_id)
# Combine all metrics
performance_data = {
"strategy_id": strategy_id,
"timestamp": datetime.now().isoformat(),
"basic_metrics": basic_metrics,
"advanced_metrics": advanced_metrics,
"risk_metrics": risk_metrics,
"attribution_metrics": attribution_metrics,
"composite_score": 0.0 # Will be calculated by scorer
}
return performance_data
async def get_basic_metrics(self, strategy_id: str) -> Dict:
"""Get basic performance metrics"""
# Get returns data
returns_data = await self.get_strategy_returns(strategy_id)
# Calculate basic metrics
cumulative_return = self.calculate_cumulative_return(returns_data)
annualized_return = self.calculate_annualized_return(returns_data)
volatility = self.calculate_volatility(returns_data)
return {
"cumulative_return": cumulative_return,
"annualized_return": annualized_return,
"volatility": volatility,
"total_trades": len(returns_data.get("trades", [])),
"win_rate": self.calculate_win_rate(returns_data)
}
async def calculate_advanced_metrics(self, strategy_id: str) -> Dict:
"""Calculate advanced performance metrics"""
returns_data = await self.get_strategy_returns(strategy_id)
# Calculate Sharpe ratio
sharpe_ratio = self.calculate_sharpe_ratio(returns_data)
# Calculate Sortino ratio
sortino_ratio = self.calculate_sortino_ratio(returns_data)
# Calculate Calmar ratio
calmar_ratio = self.calculate_calmar_ratio(returns_data)
# Calculate information ratio
information_ratio = self.calculate_information_ratio(returns_data)
return {
"sharpe_ratio": sharpe_ratio,
"sortino_ratio": sortino_ratio,
"calmar_ratio": calmar_ratio,
"information_ratio": information_ratio,
"profit_factor": self.calculate_profit_factor(returns_data),
"max_consecutive_losses": self.calculate_max_consecutive_losses(returns_data)
}
async def calculate_risk_metrics(self, strategy_id: str) -> Dict:
"""Calculate risk metrics"""
returns_data = await self.get_strategy_returns(strategy_id)
# Calculate drawdown metrics
max_drawdown = self.calculate_max_drawdown(returns_data)
avg_drawdown = self.calculate_average_drawdown(returns_data)
drawdown_duration = self.calculate_drawdown_duration(returns_data)
# Calculate VaR metrics
var_95 = self.calculate_var(returns_data, 0.95)
var_99 = self.calculate_var(returns_data, 0.99)
expected_shortfall = self.calculate_expected_shortfall(returns_data)
# Calculate beta and correlation
beta = self.calculate_beta(returns_data)
correlation = self.calculate_correlation(returns_data)
return {
"max_drawdown": max_drawdown,
"avg_drawdown": avg_drawdown,
"drawdown_duration": drawdown_duration,
"var_95": var_95,
"var_99": var_99,
"expected_shortfall": expected_shortfall,
"beta": beta,
"correlation": correlation,
"downside_deviation": self.calculate_downside_deviation(returns_data)
}
async def calculate_attribution_metrics(self, strategy_id: str) -> Dict:
"""Calculate attribution metrics"""
# Get benchmark data
benchmark_returns = await self.get_benchmark_returns(strategy_id)
strategy_returns = await self.get_strategy_returns(strategy_id)
# Calculate alpha
alpha = self.calculate_alpha(strategy_returns, benchmark_returns)
# Calculate tracking error
tracking_error = self.calculate_tracking_error(strategy_returns, benchmark_returns)
# Calculate information ratio
information_ratio = self.calculate_information_ratio(strategy_returns, benchmark_returns)
return {
"alpha": alpha,
"tracking_error": tracking_error,
"information_ratio": information_ratio,
"r_squared": self.calculate_r_squared(strategy_returns, benchmark_returns)
}
def calculate_cumulative_return(self, returns_data: Dict) -> float:
"""Calculate cumulative return"""
returns = returns_data.get("returns", [])
if not returns:
return 0.0
cumulative_return = 1.0
for ret in returns:
cumulative_return *= (1 + ret)
return cumulative_return - 1
def calculate_sharpe_ratio(self, returns_data: Dict, risk_free_rate: float = 0.02) -> float:
"""Calculate Sharpe ratio"""
returns = returns_data.get("returns", [])
if not returns:
return 0.0
avg_return = np.mean(returns)
std_return = np.std(returns)
if std_return == 0:
return 0.0
# Annualize
sharpe = (avg_return - risk_free_rate/252) / std_return * np.sqrt(252)
return sharpe
def calculate_max_drawdown(self, returns_data: Dict) -> float:
"""Calculate maximum drawdown"""
returns = returns_data.get("returns", [])
if not returns:
return 0.0
cumulative = np.cumprod(1 + np.array(returns))
running_max = np.maximum.accumulate(cumulative)
drawdown = (cumulative - running_max) / running_max
return abs(np.min(drawdown))
async def get_strategy_returns(self, strategy_id: str) -> Dict:
"""Get strategy returns data"""
# This would integrate with performance database
# For now, return placeholder data
return {
"returns": [0.001, -0.002, 0.003, 0.001, -0.001],
"trades": [],
"benchmark_returns": [0.0005, -0.001, 0.002, 0.0005, -0.0005]
}
async def get_active_strategies(self) -> List[str]:
"""Get list of active strategies"""
# This would integrate with strategy management system
# For now, return placeholder
return ["strategy_001", "strategy_002", "strategy_003"]
2. Strategy Scorer¶
Intelligent scoring system for strategy evaluation:
class StrategyScorer:
def __init__(self, scoring_engine, weight_optimizer):
self.scoring_engine = scoring_engine
self.weight_optimizer = weight_optimizer
self.scoring_weights = {
"return_weight": 0.25,
"risk_weight": 0.25,
"sharpe_weight": 0.20,
"consistency_weight": 0.15,
"attribution_weight": 0.15
}
def score_all_strategies(self, performance_data: Dict) -> Dict:
"""Score all strategies"""
strategy_scores = {}
for strategy_id, performance in performance_data.items():
try:
score = self.calculate_strategy_score(performance)
strategy_scores[strategy_id] = score
except Exception as e:
print(f"Error scoring strategy {strategy_id}: {e}")
strategy_scores[strategy_id] = 0.0
return strategy_scores
def calculate_strategy_score(self, performance: Dict) -> float:
"""Calculate comprehensive score for a strategy"""
# Extract metrics
basic_metrics = performance.get("basic_metrics", {})
advanced_metrics = performance.get("advanced_metrics", {})
risk_metrics = performance.get("risk_metrics", {})
attribution_metrics = performance.get("attribution_metrics", {})
# Calculate component scores
return_score = self.calculate_return_score(basic_metrics)
risk_score = self.calculate_risk_score(risk_metrics)
sharpe_score = self.calculate_sharpe_score(advanced_metrics)
consistency_score = self.calculate_consistency_score(basic_metrics, advanced_metrics)
attribution_score = self.calculate_attribution_score(attribution_metrics)
# Calculate weighted composite score
composite_score = (
return_score * self.scoring_weights["return_weight"] +
risk_score * self.scoring_weights["risk_weight"] +
sharpe_score * self.scoring_weights["sharpe_weight"] +
consistency_score * self.scoring_weights["consistency_weight"] +
attribution_score * self.scoring_weights["attribution_weight"]
)
# Normalize score to 0-100 range
normalized_score = max(0, min(100, composite_score * 100))
return normalized_score
def calculate_return_score(self, basic_metrics: Dict) -> float:
"""Calculate return component score"""
cumulative_return = basic_metrics.get("cumulative_return", 0)
annualized_return = basic_metrics.get("annualized_return", 0)
# Score based on annualized return
if annualized_return > 0.20: # > 20%
return 1.0
elif annualized_return > 0.10: # > 10%
return 0.8
elif annualized_return > 0.05: # > 5%
return 0.6
elif annualized_return > 0: # > 0%
return 0.4
else:
return 0.0
def calculate_risk_score(self, risk_metrics: Dict) -> float:
"""Calculate risk component score"""
max_drawdown = risk_metrics.get("max_drawdown", 1.0)
var_95 = risk_metrics.get("var_95", 0.1)
# Score based on risk metrics (lower risk = higher score)
drawdown_score = max(0, 1 - max_drawdown * 2) # Penalize high drawdowns
var_score = max(0, 1 - var_95 * 10) # Penalize high VaR
return (drawdown_score + var_score) / 2
def calculate_sharpe_score(self, advanced_metrics: Dict) -> float:
"""Calculate Sharpe ratio component score"""
sharpe_ratio = advanced_metrics.get("sharpe_ratio", 0)
sortino_ratio = advanced_metrics.get("sortino_ratio", 0)
# Score based on Sharpe ratio
if sharpe_ratio > 2.0:
return 1.0
elif sharpe_ratio > 1.5:
return 0.9
elif sharpe_ratio > 1.0:
return 0.8
elif sharpe_ratio > 0.5:
return 0.6
elif sharpe_ratio > 0:
return 0.4
else:
return 0.0
def calculate_consistency_score(self, basic_metrics: Dict, advanced_metrics: Dict) -> float:
"""Calculate consistency component score"""
win_rate = basic_metrics.get("win_rate", 0.5)
profit_factor = advanced_metrics.get("profit_factor", 1.0)
max_consecutive_losses = advanced_metrics.get("max_consecutive_losses", 10)
# Score based on consistency metrics
win_rate_score = win_rate
profit_factor_score = min(1.0, profit_factor / 2.0)
consecutive_losses_score = max(0, 1 - max_consecutive_losses / 20)
return (win_rate_score + profit_factor_score + consecutive_losses_score) / 3
def calculate_attribution_score(self, attribution_metrics: Dict) -> float:
"""Calculate attribution component score"""
alpha = attribution_metrics.get("alpha", 0)
information_ratio = attribution_metrics.get("information_ratio", 0)
r_squared = attribution_metrics.get("r_squared", 0)
# Score based on attribution metrics
alpha_score = max(0, min(1, alpha * 100)) # Normalize alpha
ir_score = max(0, min(1, information_ratio / 2)) # Normalize IR
r2_score = r_squared # R-squared is already 0-1
return (alpha_score + ir_score + r2_score) / 3
def update_scoring_weights(self, new_weights: Dict):
"""Update scoring weights"""
self.scoring_weights.update(new_weights)
# Normalize weights to sum to 1
total_weight = sum(self.scoring_weights.values())
if total_weight > 0:
for key in self.scoring_weights:
self.scoring_weights[key] /= total_weight
3. Strategy Ranker¶
Dynamic ranking engine for strategies:
class StrategyRanker:
def __init__(self, ranking_engine, trend_analyzer):
self.ranking_engine = ranking_engine
self.trend_analyzer = trend_analyzer
self.ranking_history = {}
self.ranking_changes = {}
def generate_ranking(self, strategy_scores: Dict) -> List[Dict]:
"""Generate comprehensive strategy ranking"""
# Sort strategies by score
sorted_strategies = sorted(
strategy_scores.items(),
key=lambda x: x[1],
reverse=True
)
# Generate ranking with additional metrics
ranking = []
for rank, (strategy_id, score) in enumerate(sorted_strategies, 1):
ranking_entry = {
"rank": rank,
"strategy_id": strategy_id,
"score": score,
"score_percentile": self.calculate_percentile(rank, len(sorted_strategies)),
"rank_change": self.get_rank_change(strategy_id, rank),
"score_change": self.get_score_change(strategy_id, score),
"trend": self.get_ranking_trend(strategy_id)
}
ranking.append(ranking_entry)
# Store ranking history
self.store_ranking_history(ranking)
return ranking
def calculate_percentile(self, rank: int, total_strategies: int) -> float:
"""Calculate percentile for a rank"""
if total_strategies <= 1:
return 100.0
percentile = ((total_strategies - rank) / (total_strategies - 1)) * 100
return percentile
def get_rank_change(self, strategy_id: str, current_rank: int) -> int:
"""Get rank change from previous ranking"""
if strategy_id in self.ranking_history:
previous_rank = self.ranking_history[strategy_id].get("rank", current_rank)
return previous_rank - current_rank # Positive = improved, Negative = declined
return 0
def get_score_change(self, strategy_id: str, current_score: float) -> float:
"""Get score change from previous ranking"""
if strategy_id in self.ranking_history:
previous_score = self.ranking_history[strategy_id].get("score", current_score)
return current_score - previous_score
return 0.0
def get_ranking_trend(self, strategy_id: str) -> str:
"""Get ranking trend for strategy"""
# Analyze recent ranking history
recent_rankings = self.get_recent_rankings(strategy_id, days=7)
if len(recent_rankings) < 2:
return "stable"
# Calculate trend
first_rank = recent_rankings[0]["rank"]
last_rank = recent_rankings[-1]["rank"]
if last_rank < first_rank:
return "improving"
elif last_rank > first_rank:
return "declining"
else:
return "stable"
def store_ranking_history(self, ranking: List[Dict]):
"""Store current ranking in history"""
timestamp = datetime.now().isoformat()
for entry in ranking:
strategy_id = entry["strategy_id"]
self.ranking_history[strategy_id] = {
"rank": entry["rank"],
"score": entry["score"],
"timestamp": timestamp
}
def get_recent_rankings(self, strategy_id: str, days: int = 7) -> List[Dict]:
"""Get recent ranking history for strategy"""
# This would integrate with historical data storage
# For now, return placeholder
return []
def get_ranking_statistics(self) -> Dict:
"""Get ranking statistics"""
if not self.ranking_history:
return {}
# Calculate statistics
total_strategies = len(self.ranking_history)
avg_score = sum(entry["score"] for entry in self.ranking_history.values()) / total_strategies
return {
"total_strategies": total_strategies,
"average_score": avg_score,
"top_performers": self.get_top_performers(),
"bottom_performers": self.get_bottom_performers()
}
def get_top_performers(self, count: int = 5) -> List[Dict]:
"""Get top performing strategies"""
sorted_strategies = sorted(
self.ranking_history.items(),
key=lambda x: x[1]["score"],
reverse=True
)
return [
{"strategy_id": strategy_id, "score": data["score"], "rank": data["rank"]}
for strategy_id, data in sorted_strategies[:count]
]
def get_bottom_performers(self, count: int = 5) -> List[Dict]:
"""Get bottom performing strategies"""
sorted_strategies = sorted(
self.ranking_history.items(),
key=lambda x: x[1]["score"]
)
return [
{"strategy_id": strategy_id, "score": data["score"], "rank": data["rank"]}
for strategy_id, data in sorted_strategies[:count]
]
4. Capital Allocator¶
Dynamic capital allocation based on rankings:
class CapitalAllocator:
def __init__(self, allocation_optimizer, rebalancing_engine):
self.allocation_optimizer = allocation_optimizer
self.rebalancing_engine = rebalancing_engine
self.allocation_history = {}
self.current_allocation = {}
def calculate_allocation(self, ranking: List[Dict], total_capital: float) -> Dict:
"""Calculate capital allocation based on ranking"""
# Get allocation weights
allocation_weights = self.calculate_allocation_weights(ranking)
# Calculate actual allocations
allocations = {}
for strategy_id, weight in allocation_weights.items():
allocation = total_capital * weight
allocations[strategy_id] = {
"allocation": allocation,
"weight": weight,
"percentage": weight * 100
}
# Store allocation history
self.store_allocation_history(allocations)
return allocations
def calculate_allocation_weights(self, ranking: List[Dict]) -> Dict:
"""Calculate allocation weights based on ranking"""
weights = {}
total_strategies = len(ranking)
for entry in ranking:
strategy_id = entry["strategy_id"]
rank = entry["rank"]
score = entry["score"]
# Calculate weight based on rank and score
# Higher rank and score = higher weight
rank_weight = 1.0 / rank # Inverse rank weighting
score_weight = score / 100 # Normalize score to 0-1
# Combine weights
combined_weight = (rank_weight * 0.7 + score_weight * 0.3)
weights[strategy_id] = combined_weight
# Normalize weights to sum to 1
total_weight = sum(weights.values())
if total_weight > 0:
for strategy_id in weights:
weights[strategy_id] /= total_weight
return weights
def store_allocation_history(self, allocations: Dict):
"""Store allocation history"""
timestamp = datetime.now().isoformat()
for strategy_id, allocation_data in allocations.items():
if strategy_id not in self.allocation_history:
self.allocation_history[strategy_id] = []
self.allocation_history[strategy_id].append({
"allocation": allocation_data["allocation"],
"weight": allocation_data["weight"],
"timestamp": timestamp
})
# Keep history manageable
if len(self.allocation_history[strategy_id]) > 1000:
self.allocation_history[strategy_id] = self.allocation_history[strategy_id][-1000:]
def get_allocation_trend(self, strategy_id: str, days: int = 30) -> Dict:
"""Get allocation trend for strategy"""
if strategy_id not in self.allocation_history:
return {"trend": "stable", "change_pct": 0.0}
history = self.allocation_history[strategy_id]
# Get recent history
cutoff_time = datetime.now() - timedelta(days=days)
recent_history = [
entry for entry in history
if datetime.fromisoformat(entry["timestamp"]) > cutoff_time
]
if len(recent_history) < 2:
return {"trend": "stable", "change_pct": 0.0}
# Calculate trend
initial_weight = recent_history[0]["weight"]
final_weight = recent_history[-1]["weight"]
change_pct = (final_weight - initial_weight) / initial_weight if initial_weight > 0 else 0
if change_pct > 0.1:
trend = "increasing"
elif change_pct < -0.1:
trend = "decreasing"
else:
trend = "stable"
return {
"trend": trend,
"change_pct": change_pct,
"initial_weight": initial_weight,
"final_weight": final_weight
}
API Design¶
Strategy Ranking API¶
@router.get("/ranking/current")
async def get_current_ranking():
"""Get current strategy ranking"""
# Collect performance data
performance_data = await performance_collector.collect_all_strategies_performance()
# Score strategies
strategy_scores = strategy_scorer.score_all_strategies(performance_data)
# Generate ranking
ranking = strategy_ranker.generate_ranking(strategy_scores)
return {
"ranking": ranking,
"timestamp": datetime.now().isoformat(),
"total_strategies": len(ranking)
}
@router.get("/ranking/history/{strategy_id}")
async def get_ranking_history(strategy_id: str, days: int = 30):
"""Get ranking history for strategy"""
history = strategy_ranker.get_recent_rankings(strategy_id, days)
return {"strategy_id": strategy_id, "history": history}
@router.get("/allocation/current")
async def get_current_allocation():
"""Get current capital allocation"""
# Get current ranking
ranking = await get_current_ranking()
# Calculate allocation
total_capital = 1000000 # This would come from portfolio manager
allocation = capital_allocator.calculate_allocation(ranking["ranking"], total_capital)
return {
"allocation": allocation,
"total_capital": total_capital,
"timestamp": datetime.now().isoformat()
}
@router.get("/performance/{strategy_id}")
async def get_strategy_performance(strategy_id: str):
"""Get detailed performance for strategy"""
performance = await performance_collector.collect_strategy_performance(strategy_id)
return performance
Frontend Integration¶
Strategy Ranking Dashboard¶
const StrategyRankingView: React.FC = () => {
const [currentRanking, setCurrentRanking] = useState<Ranking[]>([]);
const [currentAllocation, setCurrentAllocation] = useState<Allocation | null>(null);
const [performanceData, setPerformanceData] = useState<PerformanceData[]>([]);
return (
<div className="strategy-ranking-dashboard">
{/* Current Ranking */}
<StrategyRankingPanel
ranking={currentRanking}
onStrategySelect={handleStrategySelect}
/>
{/* Capital Allocation */}
<CapitalAllocationPanel
allocation={currentAllocation}
/>
{/* Performance Metrics */}
<PerformanceMetricsPanel
performanceData={performanceData}
/>
{/* Ranking Trends */}
<RankingTrendsPanel
ranking={currentRanking}
/>
{/* Strategy Comparison */}
<StrategyComparisonPanel
ranking={currentRanking}
/>
{/* Allocation History */}
<AllocationHistoryPanel
allocation={currentAllocation}
/>
{/* Performance Attribution */}
<PerformanceAttributionPanel
performanceData={performanceData}
/>
</div>
);
};
Implementation Roadmap¶
Phase 1: Core Infrastructure (Weeks 1-2)¶
- Set up performance collection framework
- Implement basic scoring algorithms
- Create ranking engine
Phase 2: Advanced Analytics (Weeks 3-4)¶
- Develop comprehensive performance metrics
- Implement trend analysis and attribution
- Build allocation optimization
Phase 3: Capital Management (Weeks 5-6)¶
- Create dynamic capital allocation
- Implement rebalancing engine
- Build strategy lifecycle management
Phase 4: Integration & Optimization (Weeks 7-8)¶
- Integrate with existing strategy management
- Develop comprehensive dashboard
- Performance optimization and testing
Business Value¶
Strategic Benefits¶
- Performance Optimization: Automatic identification of best-performing strategies
- Capital Efficiency: Dynamic allocation to maximize returns
- Risk Management: Continuous monitoring and filtering of underperforming strategies
- Competitive Advantage: Data-driven strategy selection and optimization
Operational Benefits¶
- Automated Management: Systematic strategy evaluation and ranking
- Real-Time Monitoring: Continuous performance tracking and analysis
- Dynamic Allocation: Automatic capital reallocation based on performance
- Lifecycle Management: Proactive identification and management of strategy performance
Technical Specifications¶
Performance Requirements¶
- Performance Collection: < 100ms for strategy metrics collection
- Scoring Calculation: < 50ms for strategy scoring
- Ranking Generation: < 20ms for ranking updates
- Allocation Calculation: < 100ms for capital allocation
Analytics Requirements¶
- Metric Accuracy: ±1% accuracy for performance calculations
- Real-Time Updates: Sub-minute updates for critical metrics
- Historical Analysis: Support for multi-year performance history
- Scalability: Handle 1000+ concurrent strategies
This Global Strategy Performance Ranking System provides institutional-grade strategy evaluation and capital allocation capabilities, enabling sophisticated performance optimization and dynamic capital management, similar to the systems used by major quantitative asset managers like AQR and Man Group.