Trading Behavior Audit System¶
37.1 System Overview¶
The Trading Behavior Audit System provides comprehensive end-to-end audit trails for all trading activities, ensuring full compliance with regulatory requirements and internal controls. It records every trading event with timestamps, source tracking, and processing paths, enabling complete traceability and automated audit reporting.
37.1.1 Core Objectives¶
- Full Event Recording: Complete audit trail for orders, cancellations, executions, strategy signals, risk controls, and anomalies
- Traceability: Support retrospective analysis of trading chains and system actions
- Audit Queries: Search and retrieve complete audit chains by account, strategy, or order ID
- Automated Reporting: Generate comprehensive audit reports with anomaly highlighting
- Regulatory Compliance: Meet requirements of major brokers, asset managers, and regulatory bodies
37.2 Architecture Design¶
37.2.1 Microservice Architecture¶
Trade Audit Center Service:
services/trade-audit-center/
├── src/
│ ├── main.py
│ ├── recorder/
│ │ ├── audit_recorder.py
│ ├── database/
│ │ ├── audit_db.py
│ ├── query/
│ │ ├── audit_query_engine.py
│ ├── analyzer/
│ │ ├── audit_analyzer.py
│ ├── reporter/
│ │ ├── audit_reporter.py
│ ├── api/
│ │ ├── audit_api.py
│ ├── config.py
│ ├── requirements.txt
├── Dockerfile
37.2.2 Core Components¶
- Audit Event Recorder: Real-time recording of all trading-related actions
- Audit Database: High-performance storage and indexing of audit records
- Audit Query Engine: Fast search and retrieval of specified trading chains
- Audit Analyzer: Automatic detection of anomalies and high-latency chains
- Report Generator: Automated PDF audit report generation
- API Interface: Query audit chains and generate reports
- Frontend Dashboard: Audit chain browser and anomaly heatmap visualization
37.3 Module Design¶
37.3.1 Audit Event Recorder (audit_recorder.py)¶
- Records every trading event with complete details
import time
class AuditRecorder:
def record_event(self, event_type, entity_id, details):
event = {
"timestamp": time.time(),
"event_type": event_type,
"entity_id": entity_id,
"details": details
}
audit_db.save_event(event)
37.3.2 Audit Database (audit_db.py)¶
- High-performance NoSQL storage for audit events
from pymongo import MongoClient
class AuditDB:
def __init__(self):
self.client = MongoClient("mongodb://localhost:27017")
self.db = self.client["audit_logs"]
def save_event(self, event):
self.db.events.insert_one(event)
def search_events(self, filters):
return list(self.db.events.find(filters))
37.3.3 Audit Query Engine (audit_query_engine.py)¶
- Retrieves complete audit chains by various criteria
class AuditQueryEngine:
def get_chain_by_order(self, order_id):
return audit_db.search_events({"entity_id": order_id})
37.3.4 Audit Analyzer (audit_analyzer.py)¶
- Analyzes audit chains for anomalies and quality issues
class AuditAnalyzer:
def detect_anomalies(self, event_chain):
anomalies = []
for event in event_chain:
if event["event_type"] == "execution" and event["details"]["slippage"] > 0.005:
anomalies.append(event)
return anomalies
37.3.5 Report Generator (audit_reporter.py)¶
- Generates comprehensive PDF audit reports
from fpdf import FPDF
class AuditReporter:
def generate_report(self, event_chain):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for event in event_chain:
pdf.cell(0, 10, f"{event['timestamp']} {event['event_type']} {event['details']}", ln=True)
pdf.output("audit_report.pdf")
37.3.6 API Interface (audit_api.py)¶
- FastAPI endpoints for audit queries and report generation
from fastapi import APIRouter
router = APIRouter()
@router.get("/audit/chain/{order_id}")
async def get_audit_chain(order_id: str):
return audit_query_engine.get_chain_by_order(order_id)
@router.post("/audit/report/{order_id}")
async def generate_audit_report(order_id: str):
chain = audit_query_engine.get_chain_by_order(order_id)
audit_reporter.generate_report(chain)
return {"message": "Report generated"}
37.3.7 Frontend Dashboard¶
- Single order audit chain visualization (signal to risk control to order to execution)
- Anomaly event heatmap (latency, slippage, risk control blocks)
- One-click audit report export
37.4 Audit Flow Example¶
- Trading system generates events → trade-audit-center records
- Audit DB stores events → query engine supports traceability
- Analyzer processes audit chains → detects anomalies
- Reporter generates comprehensive audit reports
37.5 Technology Stack¶
- Python (FastAPI, pymongo): Service implementation
- MongoDB: High-performance audit data storage
- Docker: Containerization
- React/TypeScript: Frontend dashboard
- FPDF: PDF report generation
37.6 API Design¶
GET /audit/chain/{order_id}: Get complete audit chain for orderGET /audit/account/{account_id}: Get audit chains for accountGET /audit/strategy/{strategy_id}: Get audit chains for strategyPOST /audit/report/{order_id}: Generate audit report for orderGET /audit/anomalies: Get detected anomalies
37.7 Frontend Integration¶
- Real-time audit chain visualization
- Anomaly detection and reporting
- Audit report generation and export
37.8 Implementation Roadmap¶
- Phase 1: Basic event recording and database storage
- Phase 2: Query engine and audit chain retrieval
- Phase 3: Anomaly detection and automated reporting
37.9 Integration with Existing System¶
- Integrates with all trading services for comprehensive event capture
- Provides audit capabilities for compliance and regulatory requirements
37.10 Business Value¶
| Benefit | Impact |
|---|---|
| Regulatory Compliance | Full audit trail for regulatory requirements |
| Risk Management | Complete visibility into trading activities |
| Operational Transparency | Clear audit trails for all operations |
| Compliance Reporting | Automated audit report generation |
| Internal Controls | Enhanced oversight and control mechanisms |