Adaptive Portfolio of Strategies Engine¶
36.1 System Overview¶
The Adaptive Portfolio of Strategies Engine automatically combines different strategies (trend, arbitrage, mean reversion, market making) into an optimal "super portfolio" based on real-time performance metrics. It implements professional portfolio management techniques for strategy allocation, enabling multi-objective optimization and correlation constraints.
36.1.1 Core Objectives¶
- Strategy Performance Tracking: Real-time monitoring of returns, volatility, drawdown, Sharpe, and Sortino ratios
- Dynamic Portfolio Optimization: Multi-objective optimization (maximize returns, minimize volatility)
- Correlation Constraints: Prevent high positive correlations between strategies
- Automatic Rebalancing: Periodic portfolio rebalancing (daily/weekly)
- Meta-Strategy Management: Professional portfolio management for all strategies
36.2 Architecture Design¶
36.2.1 Microservice Architecture¶
Strategy Portfolio Center Service:
services/strategy-portfolio-center/
├── src/
│ ├── main.py
│ ├── tracker/
│ │ ├── strategy_tracker.py
│ ├── optimizer/
│ │ ├── portfolio_optimizer.py
│ ├── executor/
│ │ ├── rebalance_executor.py
│ ├── monitor/
│ │ ├── portfolio_monitor.py
│ ├── api/
│ │ ├── portfolio_api.py
│ ├── config.py
│ ├── requirements.txt
├── Dockerfile
36.2.2 Core Components¶
- Strategy Performance Tracker: Real-time tracking of strategy performance metrics
- Portfolio Optimizer: Dynamic calculation of optimal portfolio weights
- Rebalance Executor: Adjusts strategy fund allocation based on new weights
- Portfolio Monitor: Real-time monitoring of overall portfolio performance
- API Interface: Query current portfolio composition and weights
- Frontend Dashboard: Portfolio weight visualization and performance tracking
36.3 Module Design¶
36.3.1 Strategy Performance Tracker (strategy_tracker.py)¶
- Collects and updates strategy performance data
class StrategyTracker:
def __init__(self):
self.performance_data = {}
def update_performance(self, strategy_id, daily_return, volatility, max_drawdown):
self.performance_data[strategy_id] = {
"return": daily_return,
"volatility": volatility,
"max_drawdown": max_drawdown
}
36.3.2 Portfolio Optimizer (portfolio_optimizer.py)¶
- Implements mean-variance optimization and custom optimization methods
import numpy as np
import cvxpy as cp
class PortfolioOptimizer:
def optimize(self, returns, covariance_matrix):
n = len(returns)
weights = cp.Variable(n)
objective = cp.Maximize(returns @ weights - 0.5 * cp.quad_form(weights, covariance_matrix))
constraints = [cp.sum(weights) == 1, weights >= 0]
prob = cp.Problem(objective, constraints)
prob.solve()
return weights.value
36.3.3 Rebalance Executor (rebalance_executor.py)¶
- Executes portfolio rebalancing based on new weights
class RebalanceExecutor:
def rebalance(self, new_weights):
for strategy_id, weight in new_weights.items():
adjust_strategy_fund_allocation(strategy_id, weight)
36.3.4 Portfolio Monitor (portfolio_monitor.py)¶
- Monitors overall portfolio performance metrics
class PortfolioMonitor:
def compute_portfolio_metrics(self, strategy_returns, strategy_weights):
portfolio_return = np.dot(strategy_returns, strategy_weights)
return portfolio_return
36.3.5 API Interface (portfolio_api.py)¶
- FastAPI endpoints for portfolio queries and management
from fastapi import APIRouter
router = APIRouter()
@router.get("/portfolio/weights")
async def get_current_portfolio_weights():
return optimizer.current_weights
36.3.6 Frontend Dashboard¶
- Strategy portfolio weight pie chart
- Portfolio historical return curve
- Rebalancing history table
- Real-time portfolio Sharpe ratio and max drawdown
36.4 Portfolio Optimization Flow Example¶
- Strategy daily performance updates → strategy-tracker records metrics
- Portfolio optimizer recalculates optimal weights
- Rebalance executor adjusts strategy fund allocation
- Portfolio monitor tracks overall performance
- Frontend dashboard visualizes portfolio changes and optimization effects
36.5 Technology Stack¶
- Python (FastAPI, numpy, cvxpy): Service implementation and optimization
- Redis: Real-time performance data caching
- Docker: Containerization
- React/TypeScript: Frontend dashboard
- Prometheus: Portfolio performance metrics
36.6 API Design¶
GET /portfolio/weights: Get current portfolio weightsGET /portfolio/performance: Get portfolio performance metricsPOST /portfolio/rebalance: Trigger manual rebalancingGET /portfolio/history: Get rebalancing historyGET /portfolio/optimization: Get optimization parameters and results
36.7 Frontend Integration¶
- Real-time portfolio weight visualization
- Performance tracking and historical analysis
- Rebalancing management and optimization controls
36.8 Implementation Roadmap¶
- Phase 1: Strategy performance tracking and basic optimization
- Phase 2: Advanced optimization algorithms and rebalancing
- Phase 3: Correlation constraints and advanced portfolio management
36.9 Integration with Existing System¶
- Integrates with strategy engine, risk center, and execution layer
- Provides portfolio management for all strategies and accounts
36.10 Business Value¶
| Benefit | Impact |
|---|---|
| Portfolio Optimization | Maximized returns with minimized volatility |
| Risk Management | Correlation constraints and diversification |
| Automated Rebalancing | Consistent portfolio maintenance |
| Performance Transparency | Clear visibility into strategy allocation |
| Professional Management | Institutional-grade portfolio optimization |