Global Metrics Monitoring & System Benchmarking¶
32.1 System Overview¶
The Global Metrics Monitoring & System Benchmarking module provides real-time, comprehensive observability and performance benchmarking for all microservices in the quantitative trading system. It enables SLA-driven operations, automated alerting, historical trend analysis, and seamless integration with Prometheus and Grafana for visualization.
32.1.1 Core Objectives¶
- Real-Time Metrics: Collect latency, TPS, CPU, memory, disk I/O, network, and account/strategy risk metrics from all microservices
- SLA Enforcement: Define and monitor Service Level Agreements (e.g., matching latency < 500μs, order success rate > 99.99%)
- Automated Alerting: Trigger alerts on threshold breaches (e.g., high latency, overload)
- Historical Analysis: Store and analyze trends (e.g., 7-day system load)
- Benchmark Automation: Periodically benchmark core modules and generate reports
- Visualization: Grafana or custom dashboards for all key metrics
32.2 Architecture Design¶
32.2.1 Microservice Architecture¶
Global Metrics Center Service:
services/global-metrics-center/
├── src/
│ ├── main.py
│ ├── collector/
│ │ ├── metrics_collector.py
│ ├── aggregator/
│ │ ├── metrics_aggregator.py
│ ├── alert/
│ │ ├── metrics_alert.py
│ ├── benchmark/
│ │ ├── benchmark_runner.py
│ ├── api/
│ │ ├── metrics_api.py
│ ├── config.py
│ ├── requirements.txt
├── Dockerfile
32.2.2 Core Components¶
- Metrics Collector: Each microservice reports its own metrics (CPU, memory, I/O, latency, TPS, etc.)
- Central Aggregator: Aggregates and normalizes metrics from all services
- Metrics Storage: Stores metrics in a time-series database (e.g., Prometheus TSDB)
- Alert System: Monitors thresholds and triggers alerts (e.g., via Telegram/Slack)
- Benchmark Runner: Periodically runs performance tests on core modules
- API Interface: Exposes metrics and system status via REST API
- Frontend Dashboard: Grafana or custom React dashboard for visualization
32.3 Module Design¶
32.3.1 Metrics Collector (metrics_collector.py)¶
- Uses
psutiland internal hooks to collect: - CPU, memory, disk I/O, network bandwidth
- Service-specific metrics (latency, TPS, order success rate, etc.)
- Account/strategy PnL and risk exposure
- Periodically pushes metrics to the aggregator
import psutil, time
class MetricsCollector:
def collect_system_metrics(self):
return {
"cpu_percent": psutil.cpu_percent(interval=None),
"memory_percent": psutil.virtual_memory().percent,
"disk_io": psutil.disk_io_counters()._asdict(),
"net_io": psutil.net_io_counters()._asdict(),
"timestamp": time.time()
}
32.3.2 Central Aggregator (metrics_aggregator.py)¶
- Receives and aggregates metrics from all services
- Stores in Prometheus-compatible format
- Supports querying by service, metric, and time range
class MetricsAggregator:
def __init__(self):
self.metrics_storage = []
def aggregate(self, service_name, metrics):
self.metrics_storage.append({"service": service_name, "metrics": metrics})
32.3.3 Alert System (metrics_alert.py)¶
- Checks metrics against thresholds (e.g., CPU > 90%, latency > 1ms)
- Triggers alerts via messaging (Telegram, Slack, Email)
class MetricsAlert:
def check_thresholds(self, metrics):
alerts = []
if metrics["cpu_percent"] > 90:
alerts.append("High CPU Usage Alert")
if metrics["memory_percent"] > 85:
alerts.append("High Memory Usage Alert")
return alerts
32.3.4 Benchmark Runner (benchmark_runner.py)¶
- Periodically runs performance tests:
- Matching engine TPS
- Backtest engine throughput
- Data playback speed
- DB query latency
- Archives weekly benchmark reports
class BenchmarkRunner:
def run_tps_test(self):
start_time = time.time()
for _ in range(100000):
match_engine.place_order(...)
duration = time.time() - start_time
tps = 100000 / duration
return {"tps": tps}
32.3.5 API Interface (metrics_api.py)¶
- FastAPI-based endpoints for querying metrics and system status
from fastapi import APIRouter
router = APIRouter()
@router.get("/metrics/{service_name}")
async def get_metrics(service_name: str):
return aggregator.query_service_metrics(service_name)
32.3.6 Frontend Dashboard¶
- Grafana or custom React dashboard
- Visualizes:
- CPU/memory/disk/network curves
- Latency and TPS distributions
- Account risk and PnL trends
- SLA achievement rates
- Real-time and historical views
32.4 SLA & Alerting¶
- SLA Examples:
- Matching latency < 500μs
- Order success rate > 99.99%
- Alerting:
- Threshold-based, real-time notification
- Multi-channel (Telegram, Slack, Email)
- Trend Analysis:
- 7-day/30-day system load and performance trends
32.5 Technology Stack¶
- Prometheus: Metrics collection and storage
- Grafana: Visualization and dashboarding
- Python (FastAPI, psutil): Service implementation
- Docker: Containerization
- Alertmanager: Alert routing and notification
32.6 API Design¶
GET /metrics/{service_name}: Query latest metrics for a serviceGET /metrics/history/{service_name}: Query historical metricsGET /benchmark/report: Get latest benchmark reportGET /system/status: System health and SLA status
32.7 Frontend Integration¶
- Grafana: Plug-and-play dashboards for all metrics
- Custom React Dashboard: For advanced visualization and SLA tracking
- Alert Visualization: Real-time alert banners and notifications
32.8 Implementation Roadmap¶
- Phase 1: Metrics collector and aggregator, Prometheus integration
- Phase 2: Alert system and SLA enforcement, basic dashboard
- Phase 3: Benchmark automation, historical analysis, advanced visualization
32.9 Integration with Existing System¶
- All microservices integrate metrics collector client
- Central aggregator and alert system run as core ops services
- Prometheus scrapes all metrics endpoints
- Grafana dashboards available to ops and engineering
32.10 Business Value¶
| Benefit | Impact |
|---|---|
| Full Observability | Real-time and historical system health |
| SLA Management | Quantifiable, enforceable reliability |
| Automated Alerting | Proactive incident response |
| Benchmarking | Continuous performance improvement |
| Transparency | Stakeholder trust and operational excellence |