Skip to content

Auto Strategy Review Center Design

12.1 Overview

The Auto Strategy Review Center represents the quality control and governance component that ensures all strategies meet institutional-grade standards before live trading deployment. This system provides systematic strategy review, automated backtesting, comprehensive metrics evaluation, and standardized approval processes to maintain portfolio quality and risk management standards.

🎯 Core Capabilities

Capability Description
Systematic Backtesting Automated backtesting with standardized parameters
Comprehensive Metrics Sharpe ratio, max drawdown, win rate, profit factor evaluation
Quality Standards Configurable review criteria and thresholds
Automated Decision Automated approve/reject decision making
Multi-stage Review Multi-environment review process (DEV/QA/PROD)
Audit Trail Complete review history and decision tracking

12.2 System Architecture

12.2.1 Strategy Review Center Service Microservice Design

New Microservice: strategy-review-center

services/strategy-review-center/
├── src/
│   ├── main.py                            # FastAPI application entry point
│   ├── evaluator/
│   │   ├── backtest_runner.py             # Automated backtest execution
│   │   ├── metrics_evaluator.py           # Performance metrics calculation
│   │   ├── risk_evaluator.py              # Risk metrics evaluation
│   │   └── quality_evaluator.py           # Strategy quality assessment
│   ├── review/
│   │   ├── review_engine.py               # Main review decision engine
│   │   ├── criteria_manager.py            # Review criteria management
│   │   ├── approval_workflow.py           # Multi-stage approval workflow
│   │   └── decision_validator.py          # Decision validation and audit
│   ├── registry/
│   │   ├── strategy_registry.py           # Strategy registration management
│   │   ├── version_control.py             # Strategy version management
│   │   └── metadata_manager.py            # Strategy metadata management
│   ├── api/
│   │   ├── review_api.py                  # Review management endpoints
│   │   ├── registry_api.py                # Strategy registry endpoints
│   │   └── metrics_api.py                 # Metrics and reporting endpoints
│   ├── models/
│   │   ├── strategy_model.py              # Strategy configuration models
│   │   ├── review_model.py                # Review process models
│   │   ├── metrics_model.py               # Performance metrics models
│   │   └── approval_model.py              # Approval workflow models
│   ├── config.py                          # Configuration management
│   └── requirements.txt                   # Python dependencies
├── Dockerfile                             # Container definition
└── docker-compose.yml                     # Local development setup

12.2.2 Strategy Review Architecture Layers

Layer 1: Strategy Registration - Strategy Metadata: Strategy information and configuration - Version Control: Strategy version management - Dependency Tracking: Strategy dependencies and requirements - Documentation: Strategy documentation and specifications

Layer 2: Automated Testing - Backtest Execution: Automated backtest execution - Performance Analysis: Comprehensive performance analysis - Risk Assessment: Risk metrics calculation and evaluation - Quality Assessment: Strategy quality and robustness testing

Layer 3: Review Decision - Criteria Evaluation: Review criteria application - Decision Engine: Automated decision making - Workflow Management: Multi-stage approval workflow - Validation: Decision validation and audit

Layer 4: Deployment Control - Environment Management: Multi-environment deployment control - Approval Tracking: Approval status tracking - Deployment Coordination: Strategy deployment coordination - Monitoring Integration: Post-deployment monitoring setup

12.3 Core Components Design

12.3.1 Strategy Registry Module

Purpose: Manage strategy registration and metadata

Key Functions: - Strategy Registration: Register new strategies for review - Metadata Management: Manage strategy metadata and documentation - Version Control: Track strategy versions and changes - Dependency Management: Manage strategy dependencies

Strategy Registry Implementation:

from datetime import datetime
from typing import Dict, List, Optional
from enum import Enum

class StrategyStatus(Enum):
    DRAFT = "draft"
    SUBMITTED = "submitted"
    UNDER_REVIEW = "under_review"
    APPROVED = "approved"
    REJECTED = "rejected"
    DEPLOYED = "deployed"
    ARCHIVED = "archived"

class StrategyType(Enum):
    TREND_FOLLOWING = "trend_following"
    MEAN_REVERSION = "mean_reversion"
    ARBITRAGE = "arbitrage"
    MARKET_MAKING = "market_making"
    STATISTICAL_ARBITRAGE = "statistical_arbitrage"
    MOMENTUM = "momentum"

class StrategyRegistry:
    def __init__(self):
        self.strategies = {}
        self.next_strategy_id = 1

    def register_strategy(self, strategy_data: Dict) -> str:
        """Register a new strategy for review"""
        strategy_id = f"strategy_{self.next_strategy_id:06d}"
        self.next_strategy_id += 1

        strategy_record = {
            "strategy_id": strategy_id,
            "name": strategy_data["name"],
            "type": strategy_data["type"],
            "description": strategy_data.get("description", ""),
            "author": strategy_data["author"],
            "version": strategy_data.get("version", "1.0.0"),
            "parameters": strategy_data.get("parameters", {}),
            "dependencies": strategy_data.get("dependencies", []),
            "status": StrategyStatus.DRAFT,
            "created_at": datetime.now(),
            "updated_at": datetime.now(),
            "review_history": [],
            "deployment_history": []
        }

        self.strategies[strategy_id] = strategy_record
        return strategy_id

    def submit_for_review(self, strategy_id: str) -> bool:
        """Submit strategy for review"""
        if strategy_id not in self.strategies:
            return False

        strategy = self.strategies[strategy_id]
        strategy["status"] = StrategyStatus.SUBMITTED
        strategy["updated_at"] = datetime.now()

        return True

    def update_strategy(self, strategy_id: str, updates: Dict) -> bool:
        """Update strategy information"""
        if strategy_id not in self.strategies:
            return False

        strategy = self.strategies[strategy_id]
        for key, value in updates.items():
            if key in ["name", "description", "parameters", "dependencies"]:
                strategy[key] = value

        strategy["updated_at"] = datetime.now()
        return True

    def get_strategy(self, strategy_id: str) -> Optional[Dict]:
        """Get strategy information"""
        return self.strategies.get(strategy_id)

    def list_strategies(self, status: Optional[StrategyStatus] = None) -> List[Dict]:
        """List strategies with optional status filter"""
        strategies = list(self.strategies.values())
        if status:
            strategies = [s for s in strategies if s["status"] == status]
        return strategies

12.3.2 Backtest Runner Module

Purpose: Execute automated backtests for strategy review

Key Functions: - Backtest Execution: Automated backtest execution - Parameter Management: Standardized backtest parameters - Result Collection: Backtest result collection and storage - Integration: Integration with backtest engine

Backtest Runner Implementation:

import asyncio
from typing import Dict, List, Optional
from datetime import datetime, timedelta

class BacktestRunner:
    def __init__(self, backtest_engine_url: str = "http://backtest-engine:8000"):
        self.backtest_engine_url = backtest_engine_url
        self.standard_parameters = {
            "start_date": "2023-01-01",
            "end_date": "2024-12-20",
            "initial_capital": 100000,
            "commission": 0.001,
            "slippage": 0.0005,
            "data_frequency": "1min"
        }

    async def run_backtest(self, strategy_id: str, strategy_params: Dict) -> Dict:
        """Run automated backtest for strategy review"""
        try:
            # Prepare backtest request
            backtest_request = {
                "strategy_id": strategy_id,
                "strategy_parameters": strategy_params,
                "backtest_parameters": self.standard_parameters,
                "request_id": f"review_{strategy_id}_{int(datetime.now().timestamp())}"
            }

            # Execute backtest (this would integrate with actual backtest engine)
            backtest_result = await self._execute_backtest(backtest_request)

            # Validate backtest result
            if not self._validate_backtest_result(backtest_result):
                raise ValueError("Invalid backtest result")

            return backtest_result

        except Exception as e:
            return {
                "success": False,
                "error": str(e),
                "strategy_id": strategy_id,
                "timestamp": datetime.now()
            }

    async def _execute_backtest(self, request: Dict) -> Dict:
        """Execute backtest via backtest engine"""
        # This would make HTTP call to backtest engine
        # For now, return mock result
        return {
            "success": True,
            "strategy_id": request["strategy_id"],
            "performance_metrics": {
                "total_return": 0.15,
                "annualized_return": 0.12,
                "sharpe_ratio": 1.8,
                "max_drawdown": 0.08,
                "win_rate": 0.65,
                "profit_factor": 1.5,
                "calmar_ratio": 1.5,
                "sortino_ratio": 2.1
            },
            "risk_metrics": {
                "volatility": 0.12,
                "var_95": 0.02,
                "cvar_95": 0.025,
                "beta": 0.8,
                "correlation": 0.3
            },
            "trade_metrics": {
                "total_trades": 1250,
                "winning_trades": 812,
                "losing_trades": 438,
                "avg_trade_duration": 2.5,
                "avg_win": 0.008,
                "avg_loss": 0.005
            },
            "execution_metrics": {
                "total_slippage": 0.002,
                "avg_slippage": 0.0008,
                "execution_cost": 0.0012,
                "fill_rate": 0.98
            },
            "timestamp": datetime.now()
        }

    def _validate_backtest_result(self, result: Dict) -> bool:
        """Validate backtest result"""
        required_fields = ["success", "strategy_id", "performance_metrics"]
        return all(field in result for field in required_fields) and result["success"]

    def get_standard_parameters(self) -> Dict:
        """Get standard backtest parameters"""
        return self.standard_parameters.copy()

    def update_standard_parameters(self, new_params: Dict):
        """Update standard backtest parameters"""
        self.standard_parameters.update(new_params)

12.3.3 Metrics Evaluator Module

Purpose: Evaluate strategy performance metrics against review criteria

Key Functions: - Metrics Calculation: Calculate comprehensive performance metrics - Criteria Evaluation: Evaluate metrics against review criteria - Risk Assessment: Assess strategy risk characteristics - Quality Scoring: Generate overall quality score

Metrics Evaluator Implementation:

from typing import Dict, List, Tuple
import numpy as np

class MetricsEvaluator:
    def __init__(self, review_criteria: Dict):
        self.review_criteria = review_criteria
        self.metric_weights = {
            "sharpe_ratio": 0.25,
            "max_drawdown": 0.20,
            "win_rate": 0.15,
            "profit_factor": 0.15,
            "calmar_ratio": 0.10,
            "sortino_ratio": 0.10,
            "var_95": 0.05
        }

    def evaluate_strategy(self, backtest_result: Dict) -> Dict:
        """Evaluate strategy against review criteria"""
        if not backtest_result.get("success", False):
            return {
                "overall_score": 0,
                "status": "FAILED",
                "reason": "Backtest failed",
                "evaluation_details": {}
            }

        performance_metrics = backtest_result["performance_metrics"]
        risk_metrics = backtest_result["risk_metrics"]

        # Calculate individual metric scores
        metric_scores = {}
        failed_criteria = []

        for metric, threshold in self.review_criteria.items():
            if metric in performance_metrics:
                value = performance_metrics[metric]
                score, passed = self._evaluate_metric(metric, value, threshold)
                metric_scores[metric] = {
                    "value": value,
                    "threshold": threshold,
                    "score": score,
                    "passed": passed
                }
                if not passed:
                    failed_criteria.append(f"{metric}: {value} vs {threshold}")

        # Calculate overall score
        overall_score = self._calculate_overall_score(metric_scores)

        # Determine status
        status, reason = self._determine_status(metric_scores, failed_criteria)

        return {
            "overall_score": overall_score,
            "status": status,
            "reason": reason,
            "evaluation_details": metric_scores,
            "failed_criteria": failed_criteria
        }

    def _evaluate_metric(self, metric: str, value: float, threshold: float) -> Tuple[float, bool]:
        """Evaluate individual metric against threshold"""
        if metric == "max_drawdown":
            # For max_drawdown, lower is better
            if value <= threshold:
                score = 1.0
                passed = True
            else:
                score = max(0, 1 - (value - threshold) / threshold)
                passed = False
        else:
            # For other metrics, higher is better
            if value >= threshold:
                score = 1.0
                passed = True
            else:
                score = max(0, value / threshold)
                passed = False

        return score, passed

    def _calculate_overall_score(self, metric_scores: Dict) -> float:
        """Calculate overall evaluation score"""
        total_score = 0
        total_weight = 0

        for metric, score_data in metric_scores.items():
            weight = self.metric_weights.get(metric, 0.1)
            total_score += score_data["score"] * weight
            total_weight += weight

        return total_score / total_weight if total_weight > 0 else 0

    def _determine_status(self, metric_scores: Dict, failed_criteria: List[str]) -> Tuple[str, str]:
        """Determine overall review status"""
        if not failed_criteria:
            return "APPROVED", "All criteria passed"

        # Check if any critical criteria failed
        critical_metrics = ["sharpe_ratio", "max_drawdown"]
        critical_failures = [criteria for criteria in failed_criteria 
                           if any(metric in criteria for metric in critical_metrics)]

        if critical_failures:
            return "REJECTED", f"Critical criteria failed: {', '.join(critical_failures)}"
        else:
            return "CONDITIONAL_APPROVAL", f"Non-critical criteria failed: {', '.join(failed_criteria)}"

12.3.4 Review Engine Module

Purpose: Main review decision engine orchestrating the review process

Key Functions: - Review Orchestration: Orchestrate the complete review process - Decision Making: Make approve/reject decisions - Workflow Management: Manage multi-stage review workflow - Audit Trail: Maintain complete review audit trail

Review Engine Implementation:

from datetime import datetime
from typing import Dict, List, Optional
import asyncio

class ReviewEngine:
    def __init__(self, registry, backtest_runner, metrics_evaluator):
        self.registry = registry
        self.backtest_runner = backtest_runner
        self.metrics_evaluator = metrics_evaluator
        self.review_history = []

    async def review_strategy(self, strategy_id: str) -> Dict:
        """Execute complete strategy review process"""
        try:
            # Get strategy information
            strategy = self.registry.get_strategy(strategy_id)
            if not strategy:
                return {"success": False, "error": "Strategy not found"}

            # Update status
            strategy["status"] = "under_review"
            strategy["updated_at"] = datetime.now()

            # Execute backtest
            backtest_result = await self.backtest_runner.run_backtest(
                strategy_id, strategy["parameters"]
            )

            # Evaluate metrics
            evaluation_result = self.metrics_evaluator.evaluate_strategy(backtest_result)

            # Make decision
            decision = self._make_decision(evaluation_result)

            # Record review
            review_record = {
                "strategy_id": strategy_id,
                "timestamp": datetime.now(),
                "backtest_result": backtest_result,
                "evaluation_result": evaluation_result,
                "decision": decision,
                "reviewer": "system"
            }

            self.review_history.append(review_record)
            strategy["review_history"].append(review_record)

            # Update strategy status
            strategy["status"] = decision["status"]
            strategy["updated_at"] = datetime.now()

            return {
                "success": True,
                "strategy_id": strategy_id,
                "decision": decision,
                "backtest_result": backtest_result,
                "evaluation_result": evaluation_result
            }

        except Exception as e:
            return {
                "success": False,
                "error": str(e),
                "strategy_id": strategy_id
            }

    def _make_decision(self, evaluation_result: Dict) -> Dict:
        """Make review decision based on evaluation"""
        status = evaluation_result["status"]
        overall_score = evaluation_result["overall_score"]

        if status == "APPROVED":
            decision = {
                "status": "approved",
                "action": "deploy_to_production",
                "score": overall_score,
                "reason": evaluation_result["reason"],
                "timestamp": datetime.now()
            }
        elif status == "CONDITIONAL_APPROVAL":
            decision = {
                "status": "conditional_approval",
                "action": "deploy_with_monitoring",
                "score": overall_score,
                "reason": evaluation_result["reason"],
                "timestamp": datetime.now()
            }
        else:  # REJECTED
            decision = {
                "status": "rejected",
                "action": "require_modification",
                "score": overall_score,
                "reason": evaluation_result["reason"],
                "timestamp": datetime.now()
            }

        return decision

    def get_review_history(self, strategy_id: Optional[str] = None) -> List[Dict]:
        """Get review history"""
        if strategy_id:
            return [review for review in self.review_history 
                   if review["strategy_id"] == strategy_id]
        return self.review_history

    def get_review_statistics(self) -> Dict:
        """Get review statistics"""
        total_reviews = len(self.review_history)
        if total_reviews == 0:
            return {"total": 0}

        status_counts = {}
        for review in self.review_history:
            status = review["decision"]["status"]
            status_counts[status] = status_counts.get(status, 0) + 1

        return {
            "total": total_reviews,
            "status_counts": status_counts,
            "approval_rate": status_counts.get("approved", 0) / total_reviews
        }

12.4 Data Architecture

12.4.1 Strategy Review Data Models

Strategy Registration Model:

{
  "strategy_id": "strategy_000001",
  "name": "BTC Trend Following Strategy",
  "type": "trend_following",
  "description": "BTC trend following strategy using moving averages",
  "author": "trader_001",
  "version": "1.0.0",
  "parameters": {
    "fast_ma": 10,
    "slow_ma": 30,
    "stop_loss": 0.02,
    "take_profit": 0.04
  },
  "dependencies": ["pandas", "numpy"],
  "status": "submitted",
  "created_at": "2024-12-20T10:30:15.123Z",
  "updated_at": "2024-12-20T10:30:15.123Z"
}

Review Criteria Model:

{
  "criteria_id": "criteria_001",
  "name": "Standard Review Criteria",
  "version": "1.0.0",
  "criteria": {
    "sharpe_ratio": 1.5,
    "max_drawdown": 0.15,
    "win_rate": 0.55,
    "profit_factor": 1.3,
    "calmar_ratio": 1.0,
    "sortino_ratio": 1.8,
    "var_95": 0.02
  },
  "weights": {
    "sharpe_ratio": 0.25,
    "max_drawdown": 0.20,
    "win_rate": 0.15,
    "profit_factor": 0.15,
    "calmar_ratio": 0.10,
    "sortino_ratio": 0.10,
    "var_95": 0.05
  },
  "enabled": true,
  "created_at": "2024-12-20T10:30:15.123Z"
}

Review Result Model:

{
  "review_id": "review_12345",
  "strategy_id": "strategy_000001",
  "timestamp": "2024-12-20T10:30:15.123Z",
  "decision": {
    "status": "approved",
    "action": "deploy_to_production",
    "score": 0.85,
    "reason": "All criteria passed",
    "timestamp": "2024-12-20T10:30:15.123Z"
  },
  "evaluation": {
    "overall_score": 0.85,
    "status": "APPROVED",
    "reason": "All criteria passed",
    "evaluation_details": {
      "sharpe_ratio": {
        "value": 1.8,
        "threshold": 1.5,
        "score": 1.0,
        "passed": true
      },
      "max_drawdown": {
        "value": 0.08,
        "threshold": 0.15,
        "score": 1.0,
        "passed": true
      }
    }
  },
  "backtest_result": {
    "performance_metrics": {
      "total_return": 0.15,
      "sharpe_ratio": 1.8,
      "max_drawdown": 0.08
    }
  }
}

12.4.2 Review Process Flow

Strategy Submission → Registration → Automated Backtest → Metrics Evaluation
    ↓
Decision Engine → Approval/Rejection → Status Update → Deployment Control
    ↓
Audit Trail → Performance Tracking → Continuous Monitoring → Quality Assurance

12.5 API Interface Design

12.5.1 Strategy Review Endpoints

Strategy Registration:

POST   /api/v1/review/strategy/register        # Register new strategy
GET    /api/v1/review/strategy/{strategy_id}   # Get strategy information
PUT    /api/v1/review/strategy/{strategy_id}   # Update strategy
DELETE /api/v1/review/strategy/{strategy_id}   # Delete strategy

Review Process:

POST   /api/v1/review/submit                   # Submit strategy for review
GET    /api/v1/review/{review_id}              # Get review result
GET    /api/v1/review/strategy/{strategy_id}/history # Get review history
POST   /api/v1/review/{review_id}/approve      # Approve review
POST   /api/v1/review/{review_id}/reject       # Reject review

Criteria Management:

GET    /api/v1/review/criteria                 # Get review criteria
PUT    /api/v1/review/criteria                 # Update review criteria
POST   /api/v1/review/criteria/version         # Create new criteria version

12.5.2 Real-time Updates

WebSocket Endpoints:

/ws/review/status                               # Real-time review status updates
/ws/review/progress                             # Real-time review progress
/ws/review/decisions                            # Real-time decision notifications

12.6 Frontend Integration

12.6.1 Strategy Review Dashboard Components

Strategy Management Panel: - Strategy Registration: New strategy registration form - Strategy List: List of all strategies with status - Strategy Details: Detailed strategy information and history - Version Control: Strategy version management

Review Process Panel: - Review Submission: Submit strategies for review - Review Progress: Real-time review progress tracking - Review Results: Review results and decision display - Review History: Complete review history

Criteria Management Panel: - Criteria Configuration: Review criteria setup and management - Threshold Settings: Performance threshold configuration - Weight Management: Metric weight configuration - Criteria Versioning: Criteria version control

12.6.2 Interactive Features

Visualization Tools: - Review Dashboard: Comprehensive review status dashboard - Performance Charts: Strategy performance visualization - Decision Analytics: Review decision analysis - Quality Metrics: Strategy quality metrics display

Analysis Tools: - Review Analytics: Review process analytics - Performance Comparison: Strategy performance comparison - Trend Analysis: Review trend analysis - Quality Reports: Strategy quality reports

12.7 Performance Characteristics

12.7.1 Review Process Metrics

Metric Target Measurement
Review Time <5 minutes Complete review process time
Backtest Speed <2 minutes Backtest execution time
Decision Accuracy 95%+ Review decision accuracy
Process Automation 100% Automated review process

12.7.2 Quality Assurance

Requirement Implementation
Standardized Process Consistent review process for all strategies
Comprehensive Evaluation Multi-factor strategy evaluation
Audit Trail Complete review audit trail
Quality Control Automated quality control enforcement

12.8 Integration with Existing System

12.8.1 Backtest Engine Integration

Backtest Integration:

Strategy Review Center → Backtest Engine → Performance Analysis → Review Decision

Result Integration: - Performance Data: Comprehensive performance data collection - Risk Metrics: Risk metrics calculation and evaluation - Quality Assessment: Strategy quality assessment - Decision Support: Automated decision support

12.8.2 Strategy Deployment Integration

Deployment Control: - Approval Workflow: Multi-stage approval workflow - Environment Management: Multi-environment deployment control - Deployment Coordination: Strategy deployment coordination - Monitoring Setup: Post-deployment monitoring setup

12.9 Implementation Roadmap

12.9.1 Phase 1: Foundation (Weeks 1-2)

  • Basic Registration: Simple strategy registration system
  • Basic Backtest: Basic backtest integration
  • Simple Evaluation: Basic metrics evaluation
  • Basic API: Core review management endpoints

12.9.2 Phase 2: Advanced Evaluation (Weeks 3-4)

  • Comprehensive Metrics: Advanced performance metrics
  • Risk Assessment: Comprehensive risk assessment
  • Quality Scoring: Advanced quality scoring
  • Decision Engine: Automated decision engine

12.9.3 Phase 3: Workflow Management (Weeks 5-6)

  • Multi-stage Review: Multi-stage review workflow
  • Approval Process: Comprehensive approval process
  • Audit Trail: Complete audit trail system
  • Quality Assurance: Advanced quality assurance

12.9.4 Phase 4: Production Ready (Weeks 7-8)

  • High Availability: Redundant review infrastructure
  • Performance Optimization: High-performance review system
  • Advanced Analytics: Comprehensive review analytics
  • Enterprise Features: Institutional-grade review system

12.10 Business Value

12.10.1 Quality Assurance

Benefit Impact
Strategy Quality Ensures only high-quality strategies are deployed
Risk Management Prevents deployment of risky strategies
Performance Standards Maintains performance standards across strategies
Compliance Ensures regulatory and internal compliance

12.10.2 Operational Excellence

Advantage Business Value
Automated Process Reduces manual review effort and errors
Standardized Evaluation Consistent evaluation across all strategies
Quality Control Automated quality control enforcement
Audit Compliance Complete audit trail for compliance

Document Information
Type: Strategy Review Center Design | Audience: Technical Leadership & Engineering Teams
Version: 1.0 | Date: December 2024
Focus: Quality Assurance & Governance | Implementation: Detailed technical specifications for automated strategy review