Centralized Error Tracking & Alert Center System Design¶
14.1 Overview¶
The Centralized Error Tracking & Alert Center represents the critical operational monitoring component that provides unified error tracking, real-time alerting, and incident response capabilities across all microservices in the quantitative trading system. This system ensures comprehensive error visibility, proactive alerting, and systematic incident management for institutional-grade operational excellence.
🎯 Core Capabilities¶
| Capability | Description |
|---|---|
| Unified Error Collection | Centralized error collection from all microservices |
| Real-time Alerting | Instant notifications via Telegram, email, Slack |
| Error Classification | Automatic error categorization and severity assessment |
| Trend Analysis | Error pattern analysis and trend monitoring |
| Incident Response | Systematic incident tracking and resolution |
| Performance Monitoring | Service health and performance tracking |
14.2 System Architecture¶
14.2.1 Error Monitor Center Microservice Design¶
New Microservice: error-monitor-center
services/error-monitor-center/
├── src/
│ ├── main.py # FastAPI application entry point
│ ├── collector/
│ │ ├── error_listener.py # Error event listener and collector
│ │ ├── error_parser.py # Error parsing and classification
│ │ ├── error_validator.py # Error validation and filtering
│ │ └── error_enricher.py # Error enrichment with context
│ ├── storage/
│ │ ├── error_storage.py # Error data storage and retrieval
│ │ ├── error_indexer.py # Error indexing for fast queries
│ │ ├── error_aggregator.py # Error aggregation and statistics
│ │ └── error_cleanup.py # Error data cleanup and retention
│ ├── notifier/
│ │ ├── telegram_notifier.py # Telegram alert notifications
│ │ ├── email_notifier.py # Email alert notifications
│ │ ├── slack_notifier.py # Slack alert notifications
│ │ ├── alert_manager.py # Alert routing and management
│ │ └── alert_template.py # Alert message templates
│ ├── analyzer/
│ │ ├── error_analyzer.py # Error pattern analysis
│ │ ├── trend_analyzer.py # Error trend analysis
│ │ ├── impact_analyzer.py # Error impact assessment
│ │ └── correlation_analyzer.py # Error correlation analysis
│ ├── api/
│ │ ├── error_api.py # Error query and management endpoints
│ │ ├── alert_api.py # Alert configuration endpoints
│ │ ├── dashboard_api.py # Dashboard data endpoints
│ │ └── incident_api.py # Incident management endpoints
│ ├── models/
│ │ ├── error_model.py # Error data models
│ │ ├── alert_model.py # Alert configuration models
│ │ ├── incident_model.py # Incident tracking models
│ │ └── dashboard_model.py # Dashboard data models
│ ├── config.py # Configuration management
│ └── requirements.txt # Python dependencies
├── Dockerfile # Container definition
└── docker-compose.yml # Local development setup
14.2.2 Error Monitoring Architecture Layers¶
Layer 1: Error Collection - Error Capture: Standardized error capture across microservices - Error Parsing: Error parsing and classification - Error Validation: Error validation and filtering - Error Enrichment: Error context enrichment
Layer 2: Error Storage - Error Storage: Centralized error data storage - Error Indexing: Fast error query indexing - Error Aggregation: Error statistics and aggregation - Data Retention: Error data retention and cleanup
Layer 3: Alert Management - Alert Detection: Real-time alert detection - Alert Routing: Multi-channel alert routing - Alert Templates: Standardized alert templates - Alert History: Alert history and tracking
Layer 4: Analysis & Response - Error Analysis: Error pattern and trend analysis - Impact Assessment: Error impact assessment - Incident Management: Systematic incident tracking - Performance Monitoring: Service health monitoring
14.3 Core Components Design¶
14.3.1 Error Collection Module¶
Purpose: Standardized error capture and collection across all microservices
Key Functions: - Error Capture: Standardized error capture mechanism - Error Classification: Automatic error categorization - Error Enrichment: Context enrichment for errors - Error Validation: Error validation and filtering
Standardized Error Capture Implementation:
import logging
import traceback
import json
from datetime import datetime
from typing import Dict, Any, Optional
import asyncio
import aio_pika
class ErrorCapture:
def __init__(self, service_name: str, error_queue: str = "error.events"):
self.service_name = service_name
self.error_queue = error_queue
self.logger = logging.getLogger(f"error_capture_{service_name}")
# Error severity levels
self.severity_levels = {
"CRITICAL": 1,
"ERROR": 2,
"WARNING": 3,
"INFO": 4,
"DEBUG": 5
}
async def capture_exception(self, exception: Exception, context: Dict = None,
severity: str = "ERROR") -> Dict[str, Any]:
"""Capture exception with context and send to error monitor"""
error_info = {
"service": self.service_name,
"error_type": type(exception).__name__,
"message": str(exception),
"traceback": traceback.format_exc(),
"severity": severity,
"severity_level": self.severity_levels.get(severity, 2),
"timestamp": datetime.utcnow().isoformat(),
"context": context or {},
"error_id": self._generate_error_id()
}
# Log error locally
self.logger.error(f"Error captured: {error_info['error_type']} - {error_info['message']}")
# Send to error monitor
await self._send_error_to_monitor(error_info)
return error_info
async def capture_error(self, error_type: str, message: str,
severity: str = "ERROR", context: Dict = None) -> Dict[str, Any]:
"""Capture custom error without exception"""
error_info = {
"service": self.service_name,
"error_type": error_type,
"message": message,
"traceback": None,
"severity": severity,
"severity_level": self.severity_levels.get(severity, 2),
"timestamp": datetime.utcnow().isoformat(),
"context": context or {},
"error_id": self._generate_error_id()
}
# Log error locally
self.logger.error(f"Error captured: {error_type} - {message}")
# Send to error monitor
await self._send_error_to_monitor(error_info)
return error_info
async def _send_error_to_monitor(self, error_info: Dict[str, Any]):
"""Send error to centralized error monitor"""
try:
# Connect to message queue (NATS/RabbitMQ)
connection = await aio_pika.connect_robust("amqp://localhost/")
channel = await connection.channel()
# Publish error to queue
await channel.default_exchange.publish(
aio_pika.Message(
body=json.dumps(error_info).encode(),
content_type="application/json"
),
routing_key=self.error_queue
)
await connection.close()
except Exception as e:
self.logger.error(f"Failed to send error to monitor: {e}")
def _generate_error_id(self) -> str:
"""Generate unique error ID"""
import uuid
return str(uuid.uuid4())
def set_context(self, **kwargs):
"""Set default context for error capture"""
self.default_context = kwargs
async def capture_performance_issue(self, metric: str, value: float,
threshold: float, context: Dict = None):
"""Capture performance-related issues"""
if value > threshold:
await self.capture_error(
error_type="PERFORMANCE_THRESHOLD_EXCEEDED",
message=f"Performance threshold exceeded: {metric} = {value} (threshold: {threshold})",
severity="WARNING",
context=context or {}
)
async def capture_health_check_failure(self, service: str, endpoint: str,
status_code: int, response_time: float):
"""Capture health check failures"""
await self.capture_error(
error_type="HEALTH_CHECK_FAILURE",
message=f"Health check failed for {service} at {endpoint}",
severity="ERROR" if status_code >= 500 else "WARNING",
context={
"service": service,
"endpoint": endpoint,
"status_code": status_code,
"response_time": response_time
}
)
14.3.2 Error Listener Module¶
Purpose: Listen and collect errors from all microservices
Key Functions: - Error Reception: Receive errors from all microservices - Error Parsing: Parse and validate error messages - Error Classification: Classify errors by type and severity - Error Routing: Route errors to appropriate handlers
Error Listener Implementation:
import asyncio
import json
import aio_pika
from typing import Dict, List, Callable
from datetime import datetime
import logging
class ErrorListener:
def __init__(self, queue_name: str = "error.events"):
self.queue_name = queue_name
self.logger = logging.getLogger("error_listener")
self.error_handlers: List[Callable] = []
self.error_buffer: List[Dict] = []
self.max_buffer_size = 1000
# Error statistics
self.error_stats = {
"total_errors": 0,
"errors_by_service": {},
"errors_by_type": {},
"errors_by_severity": {},
"last_error_time": None
}
async def start_listening(self):
"""Start listening for error events"""
try:
# Connect to message queue
connection = await aio_pika.connect_robust("amqp://localhost/")
channel = await connection.channel()
# Declare queue
queue = await channel.declare_queue(self.queue_name, durable=True)
# Start consuming messages
await queue.consume(self._process_error_message)
self.logger.info(f"Started listening for errors on queue: {self.queue_name}")
# Keep connection alive
try:
await asyncio.Future() # Run forever
finally:
await connection.close()
except Exception as e:
self.logger.error(f"Error in error listener: {e}")
async def _process_error_message(self, message: aio_pika.IncomingMessage):
"""Process incoming error message"""
async with message.process():
try:
# Parse error message
error_data = json.loads(message.body.decode())
# Validate error data
if self._validate_error_data(error_data):
# Update statistics
self._update_error_stats(error_data)
# Add to buffer
self.error_buffer.append(error_data)
# Trim buffer if needed
if len(self.error_buffer) > self.max_buffer_size:
self.error_buffer = self.error_buffer[-self.max_buffer_size:]
# Notify handlers
await self._notify_handlers(error_data)
self.logger.info(f"Processed error from {error_data.get('service', 'unknown')}")
else:
self.logger.warning(f"Invalid error data received: {error_data}")
except Exception as e:
self.logger.error(f"Error processing message: {e}")
def _validate_error_data(self, error_data: Dict) -> bool:
"""Validate error data structure"""
required_fields = ["service", "error_type", "message", "timestamp", "severity"]
for field in required_fields:
if field not in error_data:
return False
return True
def _update_error_stats(self, error_data: Dict):
"""Update error statistics"""
self.error_stats["total_errors"] += 1
self.error_stats["last_error_time"] = datetime.utcnow()
# Update service statistics
service = error_data.get("service", "unknown")
if service not in self.error_stats["errors_by_service"]:
self.error_stats["errors_by_service"][service] = 0
self.error_stats["errors_by_service"][service] += 1
# Update error type statistics
error_type = error_data.get("error_type", "unknown")
if error_type not in self.error_stats["errors_by_type"]:
self.error_stats["errors_by_type"][error_type] = 0
self.error_stats["errors_by_type"][error_type] += 1
# Update severity statistics
severity = error_data.get("severity", "unknown")
if severity not in self.error_stats["errors_by_severity"]:
self.error_stats["errors_by_severity"][severity] = 0
self.error_stats["errors_by_severity"][severity] += 1
async def _notify_handlers(self, error_data: Dict):
"""Notify all registered error handlers"""
for handler in self.error_handlers:
try:
await handler(error_data)
except Exception as e:
self.logger.error(f"Error in handler: {e}")
def add_handler(self, handler: Callable):
"""Add error handler"""
self.error_handlers.append(handler)
def get_error_stats(self) -> Dict:
"""Get error statistics"""
return self.error_stats.copy()
def get_recent_errors(self, limit: int = 100) -> List[Dict]:
"""Get recent errors"""
return self.error_buffer[-limit:]
def get_errors_by_service(self, service: str) -> List[Dict]:
"""Get errors for specific service"""
return [e for e in self.error_buffer if e.get("service") == service]
def get_errors_by_severity(self, severity: str) -> List[Dict]:
"""Get errors by severity level"""
return [e for e in self.error_buffer if e.get("severity") == severity]
14.3.3 Error Storage Module¶
Purpose: Store and manage error data with efficient querying
Key Functions: - Error Storage: Store error data in database - Error Indexing: Index errors for fast queries - Error Aggregation: Aggregate error statistics - Data Retention: Manage error data retention
Error Storage Implementation:
import asyncio
import json
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
import asyncpg
import logging
class ErrorStorage:
def __init__(self, database_url: str):
self.database_url = database_url
self.logger = logging.getLogger("error_storage")
self.pool = None
async def initialize(self):
"""Initialize database connection and create tables"""
try:
self.pool = await asyncpg.create_pool(self.database_url)
# Create error table
await self._create_error_table()
await self._create_error_indexes()
self.logger.info("Error storage initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize error storage: {e}")
raise
async def _create_error_table(self):
"""Create error table"""
async with self.pool.acquire() as conn:
await conn.execute("""
CREATE TABLE IF NOT EXISTS errors (
id SERIAL PRIMARY KEY,
error_id VARCHAR(255) UNIQUE NOT NULL,
service VARCHAR(100) NOT NULL,
error_type VARCHAR(100) NOT NULL,
message TEXT NOT NULL,
traceback TEXT,
severity VARCHAR(20) NOT NULL,
severity_level INTEGER NOT NULL,
context JSONB,
timestamp TIMESTAMP WITH TIME ZONE NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
)
""")
async def _create_error_indexes(self):
"""Create indexes for fast queries"""
async with self.pool.acquire() as conn:
# Index on service
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_errors_service ON errors(service)
""")
# Index on error_type
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_errors_type ON errors(error_type)
""")
# Index on severity
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_errors_severity ON errors(severity)
""")
# Index on timestamp
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_errors_timestamp ON errors(timestamp)
""")
# Composite index for common queries
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_errors_service_severity
ON errors(service, severity)
""")
async def save_error(self, error_data: Dict[str, Any]) -> bool:
"""Save error to database"""
try:
async with self.pool.acquire() as conn:
await conn.execute("""
INSERT INTO errors (
error_id, service, error_type, message, traceback,
severity, severity_level, context, timestamp
) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
""",
error_data["error_id"],
error_data["service"],
error_data["error_type"],
error_data["message"],
error_data.get("traceback"),
error_data["severity"],
error_data["severity_level"],
json.dumps(error_data.get("context", {})),
datetime.fromisoformat(error_data["timestamp"])
)
return True
except Exception as e:
self.logger.error(f"Failed to save error: {e}")
return False
async def get_errors(self, service: Optional[str] = None,
error_type: Optional[str] = None,
severity: Optional[str] = None,
limit: int = 100,
offset: int = 0) -> List[Dict]:
"""Get errors with filters"""
try:
query = "SELECT * FROM errors WHERE 1=1"
params = []
param_count = 0
if service:
param_count += 1
query += f" AND service = ${param_count}"
params.append(service)
if error_type:
param_count += 1
query += f" AND error_type = ${param_count}"
params.append(error_type)
if severity:
param_count += 1
query += f" AND severity = ${param_count}"
params.append(severity)
query += " ORDER BY timestamp DESC LIMIT $%d OFFSET $%d" % (param_count + 1, param_count + 2)
params.extend([limit, offset])
async with self.pool.acquire() as conn:
rows = await conn.fetch(query, *params)
return [dict(row) for row in rows]
except Exception as e:
self.logger.error(f"Failed to get errors: {e}")
return []
async def get_error_stats(self, hours: int = 24) -> Dict:
"""Get error statistics for the last N hours"""
try:
since = datetime.utcnow() - timedelta(hours=hours)
async with self.pool.acquire() as conn:
# Total errors
total = await conn.fetchval("""
SELECT COUNT(*) FROM errors WHERE timestamp >= $1
""", since)
# Errors by service
services = await conn.fetch("""
SELECT service, COUNT(*) as count
FROM errors
WHERE timestamp >= $1
GROUP BY service
ORDER BY count DESC
""", since)
# Errors by severity
severities = await conn.fetch("""
SELECT severity, COUNT(*) as count
FROM errors
WHERE timestamp >= $1
GROUP BY severity
ORDER BY count DESC
""", since)
# Errors by type
types = await conn.fetch("""
SELECT error_type, COUNT(*) as count
FROM errors
WHERE timestamp >= $1
GROUP BY error_type
ORDER BY count DESC
""", since)
return {
"total_errors": total,
"errors_by_service": {row["service"]: row["count"] for row in services},
"errors_by_severity": {row["severity"]: row["count"] for row in severities},
"errors_by_type": {row["error_type"]: row["count"] for row in types},
"time_period_hours": hours
}
except Exception as e:
self.logger.error(f"Failed to get error stats: {e}")
return {}
async def get_error_trends(self, days: int = 7) -> List[Dict]:
"""Get error trends over the last N days"""
try:
since = datetime.utcnow() - timedelta(days=days)
async with self.pool.acquire() as conn:
rows = await conn.fetch("""
SELECT
DATE(timestamp) as date,
COUNT(*) as total_errors,
COUNT(CASE WHEN severity = 'CRITICAL' THEN 1 END) as critical_errors,
COUNT(CASE WHEN severity = 'ERROR' THEN 1 END) as error_errors,
COUNT(CASE WHEN severity = 'WARNING' THEN 1 END) as warning_errors
FROM errors
WHERE timestamp >= $1
GROUP BY DATE(timestamp)
ORDER BY date
""", since)
return [dict(row) for row in rows]
except Exception as e:
self.logger.error(f"Failed to get error trends: {e}")
return []
async def cleanup_old_errors(self, days: int = 30):
"""Clean up errors older than N days"""
try:
cutoff = datetime.utcnow() - timedelta(days=days)
async with self.pool.acquire() as conn:
deleted = await conn.execute("""
DELETE FROM errors WHERE timestamp < $1
""", cutoff)
self.logger.info(f"Cleaned up old errors: {deleted}")
except Exception as e:
self.logger.error(f"Failed to cleanup old errors: {e}")
14.3.4 Alert Manager Module¶
Purpose: Manage and route alerts to appropriate channels
Key Functions: - Alert Detection: Detect when alerts should be triggered - Alert Routing: Route alerts to appropriate channels - Alert Templates: Standardized alert message templates - Alert History: Track alert history and delivery status
Alert Manager Implementation:
import asyncio
import json
from typing import Dict, List, Optional
from datetime import datetime, timedelta
import logging
import aiohttp
class AlertManager:
def __init__(self):
self.logger = logging.getLogger("alert_manager")
self.notifiers = {}
self.alert_rules = []
self.alert_history = []
# Alert severity thresholds
self.severity_thresholds = {
"CRITICAL": 1,
"ERROR": 2,
"WARNING": 3,
"INFO": 4
}
def add_notifier(self, name: str, notifier):
"""Add notification channel"""
self.notifiers[name] = notifier
def add_alert_rule(self, rule: Dict):
"""Add alert rule"""
self.alert_rules.append(rule)
async def process_error(self, error_data: Dict):
"""Process error and trigger alerts if needed"""
try:
# Check alert rules
for rule in self.alert_rules:
if self._should_trigger_alert(error_data, rule):
await self._trigger_alert(error_data, rule)
except Exception as e:
self.logger.error(f"Error processing alert: {e}")
def _should_trigger_alert(self, error_data: Dict, rule: Dict) -> bool:
"""Check if alert should be triggered based on rule"""
# Check severity
if "min_severity" in rule:
error_severity_level = self.severity_thresholds.get(error_data["severity"], 5)
min_severity_level = self.severity_thresholds.get(rule["min_severity"], 5)
if error_severity_level > min_severity_level:
return False
# Check service
if "services" in rule and error_data["service"] not in rule["services"]:
return False
# Check error type
if "error_types" in rule and error_data["error_type"] not in rule["error_types"]:
return False
# Check rate limiting
if "rate_limit" in rule:
recent_alerts = self._get_recent_alerts_for_rule(rule, minutes=rule["rate_limit"])
if len(recent_alerts) >= rule.get("max_alerts", 1):
return False
return True
def _get_recent_alerts_for_rule(self, rule: Dict, minutes: int) -> List[Dict]:
"""Get recent alerts for a specific rule"""
since = datetime.utcnow() - timedelta(minutes=minutes)
return [
alert for alert in self.alert_history
if alert["rule_id"] == rule.get("id") and alert["timestamp"] >= since
]
async def _trigger_alert(self, error_data: Dict, rule: Dict):
"""Trigger alert based on rule"""
try:
# Create alert message
alert_message = self._create_alert_message(error_data, rule)
# Send to configured channels
channels = rule.get("channels", ["telegram"])
for channel in channels:
if channel in self.notifiers:
try:
await self.notifiers[channel].send_alert(alert_message)
# Record alert
self._record_alert(error_data, rule, channel, True)
except Exception as e:
self.logger.error(f"Failed to send alert to {channel}: {e}")
self._record_alert(error_data, rule, channel, False, str(e))
else:
self.logger.warning(f"Unknown notification channel: {channel}")
except Exception as e:
self.logger.error(f"Error triggering alert: {e}")
def _create_alert_message(self, error_data: Dict, rule: Dict) -> str:
"""Create alert message from error data"""
template = rule.get("template", "default")
if template == "default":
return self._create_default_alert_message(error_data)
elif template == "detailed":
return self._create_detailed_alert_message(error_data)
else:
return self._create_custom_alert_message(error_data, template)
def _create_default_alert_message(self, error_data: Dict) -> str:
"""Create default alert message"""
return f"""
🚨 **Error Alert** 🚨
**Service:** {error_data['service']}
**Type:** {error_data['error_type']}
**Severity:** {error_data['severity']}
**Message:** {error_data['message']}
**Time:** {error_data['timestamp']}
ID: {error_data['error_id']}
""".strip()
def _create_detailed_alert_message(self, error_data: Dict) -> str:
"""Create detailed alert message"""
message = f"""
🚨 **Detailed Error Alert** 🚨
**Service:** {error_data['service']}
**Type:** {error_data['error_type']}
**Severity:** {error_data['severity']}
**Message:** {error_data['message']}
**Time:** {error_data['timestamp']}
**ID:** {error_data['error_id']}
**Context:**
{json.dumps(error_data.get('context', {}), indent=2)}
**Traceback:**
{error_data.get('traceback', 'No traceback available')}
""".strip()
return message
def _create_custom_alert_message(self, error_data: Dict, template: str) -> str:
"""Create custom alert message using template"""
# Simple template substitution
message = template
for key, value in error_data.items():
if isinstance(value, str):
message = message.replace(f"{{{key}}}", value)
return message
def _record_alert(self, error_data: Dict, rule: Dict, channel: str,
success: bool, error_message: str = None):
"""Record alert in history"""
alert_record = {
"rule_id": rule.get("id"),
"error_id": error_data["error_id"],
"channel": channel,
"success": success,
"error_message": error_message,
"timestamp": datetime.utcnow()
}
self.alert_history.append(alert_record)
# Keep only recent history
if len(self.alert_history) > 1000:
self.alert_history = self.alert_history[-1000:]
def get_alert_history(self, hours: int = 24) -> List[Dict]:
"""Get alert history for the last N hours"""
since = datetime.utcnow() - timedelta(hours=hours)
return [
alert for alert in self.alert_history
if alert["timestamp"] >= since
]
def get_alert_stats(self, hours: int = 24) -> Dict:
"""Get alert statistics"""
recent_alerts = self.get_alert_history(hours)
stats = {
"total_alerts": len(recent_alerts),
"successful_alerts": len([a for a in recent_alerts if a["success"]]),
"failed_alerts": len([a for a in recent_alerts if not a["success"]]),
"alerts_by_channel": {},
"alerts_by_rule": {}
}
for alert in recent_alerts:
# By channel
channel = alert["channel"]
if channel not in stats["alerts_by_channel"]:
stats["alerts_by_channel"][channel] = 0
stats["alerts_by_channel"][channel] += 1
# By rule
rule_id = alert["rule_id"]
if rule_id not in stats["alerts_by_rule"]:
stats["alerts_by_rule"][rule_id] = 0
stats["alerts_by_rule"][rule_id] += 1
return stats
14.4 Data Architecture¶
14.4.1 Error Data Models¶
Error Event Model:
{
"error_id": "err_12345",
"service": "trading-engine",
"error_type": "ConnectionError",
"message": "Failed to connect to market data feed",
"traceback": "Traceback (most recent call last):...",
"severity": "ERROR",
"severity_level": 2,
"context": {
"account_id": "acc_123",
"strategy_id": "strat_456",
"market": "BTCUSD",
"attempt": 3
},
"timestamp": "2024-12-20T10:30:15.123Z"
}
Alert Rule Model:
{
"id": "rule_001",
"name": "Critical Trading Errors",
"description": "Alert on critical trading system errors",
"min_severity": "ERROR",
"services": ["trading-engine", "order-executor"],
"error_types": ["ConnectionError", "OrderError", "RiskError"],
"channels": ["telegram", "email"],
"template": "detailed",
"rate_limit": 5,
"max_alerts": 3,
"enabled": true
}
Alert History Model:
{
"rule_id": "rule_001",
"error_id": "err_12345",
"channel": "telegram",
"success": true,
"error_message": null,
"timestamp": "2024-12-20T10:30:16.456Z"
}
14.4.2 Real-time Data Flow¶
Microservice Error → Error Capture → Message Queue → Error Listener
↓
Error Storage → Alert Detection → Alert Manager → Notification Channels
↓
Real-time Dashboard → Error Analytics → Trend Analysis → Incident Response
14.5 API Interface Design¶
14.5.1 Error Monitor Endpoints¶
Error Management:
GET /api/v1/errors # Get errors with filters
GET /api/v1/errors/{error_id} # Get specific error
GET /api/v1/errors/stats # Get error statistics
GET /api/v1/errors/trends # Get error trends
DELETE /api/v1/errors/cleanup # Cleanup old errors
Alert Management:
GET /api/v1/alerts/rules # Get alert rules
POST /api/v1/alerts/rules # Create alert rule
PUT /api/v1/alerts/rules/{rule_id} # Update alert rule
DELETE /api/v1/alerts/rules/{rule_id} # Delete alert rule
GET /api/v1/alerts/history # Get alert history
GET /api/v1/alerts/stats # Get alert statistics
Dashboard Data:
GET /api/v1/dashboard/overview # Get dashboard overview
GET /api/v1/dashboard/errors-by-service # Get errors by service
GET /api/v1/dashboard/errors-by-severity # Get errors by severity
GET /api/v1/dashboard/error-trends # Get error trends
GET /api/v1/dashboard/alert-stats # Get alert statistics
14.5.2 Real-time Updates¶
WebSocket Endpoints:
/ws/errors/stream # Real-time error stream
/ws/alerts/stream # Real-time alert stream
/ws/dashboard/updates # Real-time dashboard updates
14.6 Frontend Integration¶
14.6.1 Error Monitor Dashboard Components¶
Error Overview Panel: - Error Summary: Total errors, critical errors, error rate - Service Health: Error count by service - Severity Distribution: Errors by severity level - Recent Errors: Latest error events
Error Details Panel: - Error List: Detailed error list with filters - Error Details: Full error information and context - Error Search: Search errors by various criteria - Error Actions: Error acknowledgment and resolution
Alert Management Panel: - Alert Rules: Configure and manage alert rules - Alert History: Alert delivery history - Alert Statistics: Alert success/failure rates - Notification Channels: Configure notification channels
Analytics Panel: - Error Trends: Error trends over time - Service Performance: Service error rates - Error Patterns: Error pattern analysis - Impact Analysis: Error impact assessment
14.6.2 Interactive Features¶
Visualization Tools: - Error Charts: Error count and trend charts - Service Heatmap: Service health heatmap - Alert Timeline: Alert history timeline - Performance Dashboard: System performance metrics
Analysis Tools: - Error Analysis: Detailed error analysis - Pattern Detection: Error pattern detection - Correlation Analysis: Error correlation analysis - Root Cause Analysis: Error root cause analysis
14.7 Performance Characteristics¶
14.7.1 Error Monitor Performance Metrics¶
| Metric | Target | Measurement |
|---|---|---|
| Error Processing | <10ms | Error processing time |
| Alert Delivery | <5 seconds | Alert delivery time |
| Query Response | <100ms | Error query response time |
| Data Retention | 30 days | Error data retention period |
14.7.2 Alert System Quality¶
| Requirement | Implementation |
|---|---|
| Real-time Alerts | Immediate alert detection and delivery |
| Multi-channel | Support for Telegram, email, Slack |
| Rate Limiting | Configurable alert rate limiting |
| Delivery Tracking | Alert delivery status tracking |
14.8 Integration with Existing System¶
14.8.1 Microservice Integration¶
Standardized Integration:
Real-time Monitoring: - Error Collection: Real-time error collection from all services - Health Monitoring: Service health and performance monitoring - Alert Integration: Integrated alerting with existing systems - Dashboard Integration: Integration with existing dashboards
14.8.2 Incident Response Integration¶
Incident Management Integration: - Incident Creation: Automatic incident creation for critical errors - Escalation Rules: Configurable escalation rules - Response Tracking: Incident response tracking - Resolution Workflow: Systematic resolution workflow
14.9 Implementation Roadmap¶
14.9.1 Phase 1: Foundation (Weeks 1-2)¶
- Basic Error Collection: Basic error collection from microservices
- Simple Storage: Basic error storage and retrieval
- Basic Alerts: Simple alert notifications
- Basic Dashboard: Basic error dashboard
14.9.2 Phase 2: Advanced Features (Weeks 3-4)¶
- Advanced Error Analysis: Error pattern and trend analysis
- Multi-channel Alerts: Support for multiple alert channels
- Alert Rules: Configurable alert rules
- Error Classification: Advanced error classification
14.9.3 Phase 3: Analytics (Weeks 5-6)¶
- Error Analytics: Comprehensive error analytics
- Performance Monitoring: Service performance monitoring
- Trend Analysis: Advanced trend analysis
- Impact Assessment: Error impact assessment
14.9.4 Phase 4: Production Ready (Weeks 7-8)¶
- High Availability: Redundant error monitoring infrastructure
- Performance Optimization: High-performance error processing
- Advanced Analytics: Comprehensive error analytics
- Enterprise Features: Institutional-grade error monitoring
14.10 Business Value¶
14.10.1 Operational Excellence¶
| Benefit | Impact |
|---|---|
| Proactive Monitoring | Early detection and response to issues |
| Reduced Downtime | Faster incident response and resolution |
| Improved Reliability | Better system reliability and stability |
| Operational Visibility | Complete operational visibility |
14.10.2 Risk Management¶
| Advantage | Business Value |
|---|---|
| Risk Mitigation | Proactive risk identification and mitigation |
| Compliance | Better compliance with operational requirements |
| Quality Assurance | Improved system quality and reliability |
| Professional Operations | Institutional-grade operational standards |
Document Information
Type: Centralized Error Tracking & Alert Center Design | Audience: Technical Leadership & Engineering Teams
Version: 1.0 | Date: December 2024
Focus: Error Monitoring & Alerting | Implementation: Detailed technical specifications for centralized error monitoring and alerting