66. Automated Strategy Evolution System¶
Overview¶
The Automated Strategy Evolution System enables machine-driven generation and optimization of trading strategies using genetic programming, hyperparameter search, and multi-objective optimization. Strategies evolve through generations, with each generation undergoing backtest evaluation, elite selection, crossover, and mutation—enabling continuous improvement and innovation.
Architecture & Module Breakdown¶
| Module | Description |
|---|---|
| Gene Pool Manager | Manages strategy genes (structure/parameters) |
| Strategy Generator | Randomly generates initial strategies |
| Strategy Evaluator | Backtests and scores strategies |
| Evolution Engine | Performs crossover, mutation, selection |
| Evolution Recorder | Records evolution history and genealogy |
| API | Start evolution tasks, view genealogy |
| Frontend | Evolution dashboard and visualization |
Microservice Directory¶
services/strategy-evolution-center/
├── src/
│ ├── main.py
│ ├── genepool/gene_manager.py
│ ├── generator/strategy_generator.py
│ ├── evaluator/strategy_evaluator.py
│ ├── evolution/evolution_engine.py
│ ├── recorder/evolution_recorder.py
│ ├── api/evolution_api.py
│ ├── config.py
│ └── requirements.txt
├── Dockerfile
Core Component Design¶
1. Gene Pool Manager
2. Strategy Generator
class StrategyGenerator:
def generate_strategy(self):
gene = gene_manager.get_random_gene()
return build_strategy_from_gene(gene)
3. Strategy Evaluator
class StrategyEvaluator:
def evaluate(self, strategy):
results = backtest_strategy(strategy)
score = compute_fitness_score(results)
return score
4. Evolution Engine
class EvolutionEngine:
def evolve(self, population):
selected = select_top_k(population, k=20)
next_generation = crossover_and_mutate(selected)
return next_generation
5. Evolution Recorder
class EvolutionRecorder:
def record_generation(self, generation_id, population_stats):
save_to_db("evolution_history", generation_id=generation_id, stats=population_stats)
6. API Example
from fastapi import APIRouter
router = APIRouter()
@router.post("/evolution/start")
async def start_evolution_task(task_config: dict):
return evolution_engine.start_new_task(task_config)
Frontend Integration¶
StrategyEvolutionView.tsx - Evolution progress chart (average score per generation) - Best strategy per generation - Genealogy tree (ancestor/descendant relationships) - Gene mutation visualization
Implementation Roadmap¶
- Phase 1: Core gene pool, generator, evaluator, and API
- Phase 2: Evolution engine, recorder, and frontend dashboard
- Phase 3: Co-evolution, ML-guided evolution, advanced visualization
System Integration¶
- Integrates with backtest engine for evaluation
- Supports launching and monitoring evolution experiments
- Provides genealogy and mutation history for research
Business & Technical Value¶
- Innovation: Machine-driven discovery of novel strategies
- Performance: Continuous optimization for returns, Sharpe, drawdown
- Scalability: Supports millions of strategies and generations
- Transparency: Full genealogy and evolution history
- Competitive Edge: AI-powered, self-improving quant research