65. Ultra-Scale Backtest Data Lake¶
Overview¶
The Ultra-Scale Backtest Data Lake provides centralized, high-performance management of massive backtest datasets (tick, Level2, event streams) for millions of strategies. It supports efficient storage, fast retrieval, metadata management, compression, and distributed scalability—enabling institutional-grade research and machine learning.
Architecture & Module Breakdown¶
| Module | Description |
|---|---|
| Data Lake Storage | Efficient storage and retrieval of raw/results |
| Metadata Manager | Manages run parameters, environment, version |
| Query Optimizer | Fast index/partition-based data retrieval |
| Version Controller | Manages versioned backtest data |
| API | Upload, download, and query endpoints |
| Frontend | Data lake browser and smart query panel |
Microservice Directory¶
services/backtest-data-lake-center/
├── src/
│ ├── main.py
│ ├── storage/data_lake_storage.py
│ ├── metadata/metadata_manager.py
│ ├── optimizer/query_optimizer.py
│ ├── versioner/version_controller.py
│ ├── api/data_lake_api.py
│ ├── config.py
│ └── requirements.txt
├── Dockerfile
Core Component Design¶
1. Data Lake Storage
import pyarrow.parquet as pq
class DataLakeStorage:
def save_backtest_data(self, strategy_id, data):
pq.write_table(data, f"/data_lake/{strategy_id}.parquet")
def load_backtest_data(self, strategy_id):
return pq.read_table(f"/data_lake/{strategy_id}.parquet")
2. Metadata Manager
class MetadataManager:
def save_metadata(self, strategy_id, metadata):
db.insert("backtest_metadata", strategy_id=strategy_id, **metadata)
def query_metadata(self, filters):
return db.query("backtest_metadata", filters)
3. Query Optimizer
class QueryOptimizer:
def optimize_query(self, query_conditions):
# Precompute partition keys, indexes
return fast_query_engine(query_conditions)
4. Version Controller
class VersionController:
def manage_versions(self, strategy_id, version, data):
save_to_versioned_bucket(strategy_id, version, data)
5. API Example
from fastapi import APIRouter
router = APIRouter()
@router.post("/data_lake/upload")
async def upload_backtest_data(strategy_id: str, data: bytes):
return data_lake_storage.save_backtest_data(strategy_id, data)
@router.get("/data_lake/download/{strategy_id}")
async def download_backtest_data(strategy_id: str):
return data_lake_storage.load_backtest_data(strategy_id)
Frontend Integration¶
DataLakeBrowserView.tsx - Strategy backtest data browser - Version list/history comparison - Smart query (by strategy, time, market, params) - Metadata snapshot panel
Implementation Roadmap¶
- Phase 1: Core storage, metadata, and API
- Phase 2: Query optimizer, versioning, and frontend
- Phase 3: Distributed storage, streaming updates, geo-replication
System Integration¶
- Backtest engines store results and metadata in the data lake
- Research and analytics systems query and download data
- Supports multi-version, multi-strategy, multi-market research
Business & Technical Value¶
- Scale: Petabyte-level, multi-year, multi-strategy data management
- Performance: High-throughput, compressed, vectorized I/O
- Traceability: Full metadata and version history for every run
- Resilience: Distributed, geo-replicated, disaster recovery ready
- Research Power: Enables massive ML training and strategy research