69. Cross-Exchange Arbitrage System¶
Overview¶
The Cross-Exchange Arbitrage System monitors price differences for the same asset across multiple exchanges in real-time, automatically detecting and executing profitable arbitrage opportunities. It supports direct arbitrage, triangular arbitrage, and intelligent decision-making based on fees, slippage, and transfer times.
Architecture & Module Breakdown¶
| Module | Description |
|---|---|
| Exchange Data Fetcher | Real-time synchronization of exchange quotes |
| Arbitrage Detector | Discovers cross-exchange price differences |
| Cost Estimator | Estimates trading costs and net profit |
| Arbitrage Decision Engine | Determines whether to execute arbitrage |
| Arbitrage Executor | Executes cross-exchange buy/sell orders |
| API | Query opportunities, manual trigger |
| Frontend | Arbitrage monitoring dashboard and history |
Microservice Directory¶
services/cross-exchange-arb-center/
├── src/
│ ├── main.py
│ ├── fetcher/exchange_data_fetcher.py
│ ├── detector/arbitrage_detector.py
│ ├── estimator/cost_estimator.py
│ ├── engine/arbitrage_decision_engine.py
│ ├── executor/arbitrage_executor.py
│ ├── api/arb_api.py
│ ├── config.py
│ └── requirements.txt
├── Dockerfile
Core Component Design¶
1. Exchange Data Fetcher
class ExchangeDataFetcher:
def fetch_market_data(self):
return get_latest_quotes_from_all_exchanges()
2. Arbitrage Detector
class ArbitrageDetector:
def find_arbitrage_opportunities(self, market_data):
opportunities = []
for symbol in market_data.symbols:
best_bid_binance = market_data.binance[symbol]["bid"]
best_ask_okx = market_data.okx[symbol]["ask"]
if best_bid_binance > best_ask_okx * 1.002: # 0.2% profit margin
opportunities.append({
"symbol": symbol,
"buy_exchange": "OKX",
"sell_exchange": "Binance",
"buy_price": best_ask_okx,
"sell_price": best_bid_binance
})
return opportunities
3. Cost Estimator
class CostEstimator:
def estimate_profit(self, opportunity, fees, slippage):
expected_profit = opportunity["sell_price"] - opportunity["buy_price"] - fees - slippage
return expected_profit
4. Arbitrage Decision Engine
class ArbitrageDecisionEngine:
def should_execute(self, opportunity):
expected_profit = cost_estimator.estimate_profit(opportunity, total_fees, expected_slippage)
return expected_profit > minimum_expected_profit
5. Arbitrage Executor
class ArbitrageExecutor:
async def execute_arbitrage(self, opportunity):
await place_order(opportunity["buy_exchange"], opportunity["symbol"], "buy", opportunity["buy_price"])
await place_order(opportunity["sell_exchange"], opportunity["symbol"], "sell", opportunity["sell_price"])
6. API Example
from fastapi import APIRouter
router = APIRouter()
@router.get("/arbitrage/opportunities")
async def get_current_arbitrage_opportunities():
return arbitrage_detector.find_arbitrage_opportunities(market_data)
Frontend Integration¶
CrossExchangeArbView.tsx - Current cross-exchange arbitrage opportunities table - Real-time arbitrage path visualization - Arbitrage history and profit statistics - Success rate and average profit curves
Implementation Roadmap¶
- Phase 1: Core data fetcher, detector, estimator, and API
- Phase 2: Decision engine, executor, and frontend dashboard
- Phase 3: Distributed arbitrage bot network, priority queue management
System Integration¶
- Monitors multiple exchanges simultaneously
- Integrates with execution engines for cross-exchange orders
- Provides real-time arbitrage opportunity detection and execution
Business & Technical Value¶
- Profit Generation: Captures risk-free arbitrage opportunities
- Automation: Fully automated detection and execution
- Scalability: Supports multiple exchanges and asset pairs
- Transparency: Full audit trail and profit tracking
- Competitive Edge: Professional-grade arbitrage execution